This study aims to investigate the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and its role in regulating apoptosis of human luteinized granulosa cells (LGC). By using RT-PCR and immunocytochemistry, the expression of HB-EGF and the EGF receptor family was demonstrated. HER4, one of the two cognate receptors for HB-EGF, was found translocated into the nucleus. HB-EGF exists in two forms, the precursor membrane-anchored form and the mature secreted form. Addition of recombinant HB-EGF, which acts as the secreted form, into the cell culture inhibited apoptosis and appeared to stimulate mitosis, indicating that the secreted form is potentially an anti-apoptotic factor and a mitogen for LGC. In contrast, CRM197, a specific inhibitor for the interaction between HB-EGF and the EGF receptor, inhibited rather than enhanced apoptosis, suggesting that the membrane-anchored form constitutively functions as a pro-apoptotic factor for LGC. Furthermore, the finding that apoptosis inhibition by CRM197 in the aggregate cells was much more pronounced than in the single cells indicates that pro-apoptotic activity was carried out in a juxtacrine fashion, as would be expected for the membrane-anchored form of HB-EGF. These data suggest that HB-EGF may be a unique regulator of LGC apoptosis, with two functionally opposing products arising from the same gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molehr/8.8.734 | DOI Listing |
Cell Death Differ
January 2025
Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany.
The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy.
Background: Cellular prion protein (PrP) is a widely expressed membrane-anchored glycoprotein, which has been associated with the development and progression of several types of human malignancies, controlling cancer stem cell activity. However, the different molecular mechanisms regulated by PrP in normal and tumor cells have not been characterized yet.
Methods: To assess the role of PrP in patient-derived glioblastoma stem cell (GSC)-enriched cultures, we generated cell lines in which PrP was either overexpressed or down-regulated and investigated, in 2D and 3D cultures, its role in cell proliferation, migration, and invasion.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!