Setting of graded levels of a protein in yeast by a t-degron technique as applied to phosphoglycerate mutase.

BMC Genet

Dept, of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave, Boston MA 02115, USA.

Published: July 2002

Background: Setting of graded levels of a protein for in vivo studies by controlled gene expression has inconveniences, and we here explore the use of the t-degron technique instead.

Results: In a yeast t-degron (ubiquitin-argDHFR(ts))- phosphoglycerate mutase (GPM1) fusion strain, increasing periods of exposure to the non-permissive temperature 37 degrees C, even in the presence of cycloheximide, gave decreasing function, as assessed at 23 degrees C in vivo by glucose metabolism and confirmed by immunoblot.

Conclusion: An ideal system would set a range of lower levels of a protein, do so without compensating protein synthesis, and give stable activity for in vitro comparisons. Although the first two aims appear obtainable, the third was not in this example of the application, limiting its uses for some but not all purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC117797PMC
http://dx.doi.org/10.1186/1471-2156-3-13DOI Listing

Publication Analysis

Top Keywords

levels protein
12
setting graded
8
graded levels
8
yeast t-degron
8
t-degron technique
8
phosphoglycerate mutase
8
protein
4
protein yeast
4
technique applied
4
applied phosphoglycerate
4

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research.

Int J Surg

January 2025

Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.

Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.

View Article and Find Full Text PDF

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!