The use of coregistered preoperative anatomical scans to provide navigational information in the operating room has greatly benefited the field of neurosurgery. Nonetheless, it has been widely acknowledged that significant errors between the operating field and the preoperative images are generated as surgery progresses. Quantification of tissue shift can be accomplished with volumetric intraoperative imaging; however, more functional, lower cost alternative solutions to this challenge are desirable. We are developing the strategy of exploiting a computational model driven by sparse data obtained from intraoperative ultrasound and cortical surface tracking to warp preoperative images to reflect the current state of the operating field. This paper presents an initial quantification of the predictive capability of the current model to computationally capture tissue deformation during retraction in the porcine brain. Performance validation is achieved through comparisons of displacement and pressure predictions to experimental measurements obtained from computed tomographic images and pressure sensor recordings. Group results are based upon a generalized set of boundary conditions for four subjects that, on average, account for at least 75% of tissue motion generated during interhemispheric retraction. Individualized boundary conditions can improve the degree of data-model match by 10% or more but warrant further study. Overall, the level of quantitative agreement achieved in these experiments is encouraging for updating preoperative images to reflect tissue deformation resulting from retraction, especially since model improvements are likely as a result of the intraoperative constraints that can be applied through sparse data collection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2002.800760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!