Microwave enhanced Akabori reaction for peptide analysis.

J Am Soc Mass Spectrom

Department of Chemistry and Chemical Biology, George Barasch Bioorganic Research Laboratory, Stevens Institute of Technology, Hoboken, New Jersey, USA.

Published: July 2002

The Akabori reaction, devised in 1952 for the identification of C-terminus amino acids, involves the heating of a linear peptide in the presence of anhydrous hydrazine in a sealed tube for several hours. We report here a modified Akabori reaction that rapidly identifies the C-terminus amino acid in a polypeptide including its amino acid sequence information at both the C-terminus and the N-terminus. This modified methodology demonstrates the fundamentals of microwave chemistry applied to bioanalytical problems. In this modified process, hydrazinolysis has been accelerated by the application of microwave irradiation. In our reaction, the linear peptide and hydrazine solution, contained in a loosely covered conical flask, was exposed to a few minutes of irradiation using an unmodified domestic microwave oven. While the classical Akabori reaction required several hours, the microwave assisted reaction takes just minutes. If dimethyl sulfoxide is added to dilute the reaction mixture, the process is retarded enough to allow aliquots of the reaction mixture to be drawn every few minutes over a period of about an hour in order to study the progress of hydrazinolysis. Reaction products were monitored by mass spectrometry-primarily FAB-MS. In addition to providing sequence information, the microwave enhanced Akabori reaction quickly detects the presence of arginine (Arg) by converting each Arg to ornithine (Orn). Furthermore, certain amino acids, containing beta-SH, CO2H, and CONH2 groups in their side chain, are susceptible to modification by hydrazine, thereby, providing rapid confirmation of the presence of these amino acid residues. In these preliminary studies, the following oligopeptides were analyzed to demonstrate the effectiveness of our approach; the dipeptide (Trp-Phe), the tripeptide (Tyr-Gly-Gly), the tetrapeptide (Pro-Phe-Gly-Lys), the heptapeptide (Ala-Pro-Arg-Leu-Arg-Phe-Tyr), and a N-terminal blocked tripeptide (N-acetyl-Met-Leu-Phe).

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1044-0305(02)00387-2DOI Listing

Publication Analysis

Top Keywords

akabori reaction
20
amino acid
12
reaction
10
microwave enhanced
8
enhanced akabori
8
c-terminus amino
8
amino acids
8
linear peptide
8
reaction mixture
8
microwave
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!