A study has been undertaken to evaluate the usefulness of MALDI Q-TOF data for protein identification. The comparison of MS data of protein digests obtained on a conventional MALDI TOF instrument to the MS data from the MALDI Q-TOF reveal peptide patterns with similar intensity ratios. However, comparison of MS/MS Q-TOF data produced by nanoelectrospray versus MALDI reveals striking differences. Peptide fragment ions obtained from doubly charged precursors produced by nanoelectrospray are mainly y-type ions with some b-ions in the lower mass range. In contrast, peptide fragment ions produced from the singly charged ions originating from the MALDI source are a mixture of y-, b- and a-ions accompanied by ions resulting from neutral loss of ammonia or water. The ratio and intensity of these fragment ions is found to be strongly sequence dependent for MALDI generated ions. The singly charged peptides generated by MALDI show a preferential cleavage of the C-terminal bond of acidic residues aspartic and glutamic acid and the N-terminal bond of proline. This preferential cleavage can be explained by the mobile proton model and is present in peptides that contain both arginine and an acidic amino acid. The MALDI Q-TOF MS/MS data of 24 out of 26 proteolytic peptides produced by trypsin or Asp-N digestions were successfully used for protein identification via database searching, thus indicating the general usefulness of the data for protein identification. De novo sequencing using a mixture of 160/18O water during digestion has been explored and de novo sequences for a number of peptides have been obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1044-0305(02)00414-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!