The interaction of different preparations of chromatin non-histone proteins (NHP) isolated from rat liver and thymus with homologous and heterologous DNA was studied by a membrane filter technique. All the NHP preparations studied form complexes with DNA in 0.02 tris-HCl (pH 7.5)--3 mM MgCl2. Denatured DNA binds NHP more effectively than native NDA. The largest part of NHP which interacts with DNA is bound to the latter non-specifically. A small part of NHP interacts specifically with homologous native DNA in 5 M urea. Specific binding of NHP to denaturate DNA is shown both in the presence of urea and in its absence. The data obtained are discussed in the light of a possible role of NHP in the specific regulation of transcription process.
Download full-text PDF |
Source |
---|
Clin Rev Allergy Immunol
December 2024
Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.
In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program.
View Article and Find Full Text PDFNat Commun
January 2025
Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Following DNA replication, the newly reassembled chromatin is disorganized and must mature to its steady state to maintain both genome and epigenome integrity. However, the regulatory mechanisms governing this critical process remain poorly understood. Here, we show that histone H3K56 acetylation (H3K56ac), a mark on newly-synthesized H3, facilitates the remodeling of disorganized nucleosomes in nascent chromatin, and its removal at the subsequent G2/M phase of the cell cycle marks the completion of chromatin maturation.
View Article and Find Full Text PDFGenome Biol
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!