Biological control of postharvest diseases of fruits.

Annu Rev Phytopathol

Appalachian Fruit Research Station, USDA Agricultural Research Service, Kearneysville, West Virginia 25430, USA.

Published: December 2002

Losses from postharvest fruit diseases range from 1 to 20 percent in the United States, depending on the commodity. The application of fungicides to fruits after harvest to reduce decay has been increasingly curtailed by the development of pathogen resistance to many key fungicides, the lack of replacement fungicides, negative public perception regarding the safety of pesticides and consequent restrictions on fungicide use. Biological control of postharvest diseases (BCPD) has emerged as an effective alternative. Because wound-invading necrotrophic pathogens are vulnerable to biocontrol, antagonists can be applied directly to the targeted area (fruit wounds), and a single application using existing delivery systems (drenches, line sprayers, on-line dips) can significantly reduce fruit decays. The pioneering biocontrol products BioSave and Aspire were registered by EPA in 1995 for control of postharvest rots of pome and citrus fruit, respectively, and are commercially available. The limitations of these biocontrol products can be addressed by enhancing biocontrol through manipulation of the environment, using mixtures of beneficial organisms, physiological and genetic enhancement of the biocontrol mechanisms, manipulation of formulations, and integration of biocontrol with other alternative methods that alone do not provide adequate protection but in combination with biocontrol provide additive or synergistic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.phyto.40.120401.130158DOI Listing

Publication Analysis

Top Keywords

control postharvest
12
biological control
8
postharvest diseases
8
biocontrol products
8
biocontrol
7
postharvest
4
diseases fruits
4
fruits losses
4
losses postharvest
4
fruit
4

Similar Publications

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against , the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of , with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF

Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved.

View Article and Find Full Text PDF

Watermelon (), it's an important fruit in Brazil, producing 1.9 million ton/year, occupies the fifth place in the world, (FAO, 2022), but post-harvest diseases are a major limitation, leading to losses of up to 15% (Balasubramaniam et al. 2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!