Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.).

J Exp Bot

Division of Microbial Ecology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeñská 1083, Prague 4, 142 20, Czech Republic.

Published: August 2002

Selected flavonoids that are known as inducers and a suppressor of nodulation (nod) genes of the symbiotic bacterium Rhizobium leguminosarum bv. viciae were tested for their effect on symbiosis formation with garden pea as the host. A solid substrate was omitted from the hydroponic growing system in order to prevent losses of flavonoids due to adsorption and degradation. The presumed interaction of the tested flavonoids with nod genes has been verified for the genetic background of strain 128C30. A stimulatory effect of a nod gene inducer naringenin on symbiotic nodule number formed per plant 14 d after inoculation was detected at concentrations of 0.1 and 1 micro g ml(-1) nutrient solution. At 10 micro g ml(-1), the highest concentration tested, naringenin was already inhibitory. By contrast, nodulation was negatively affected by a nod gene suppressor, quercetin, at concentrations above 1 micro g ml(-1), as well as by another tested nod gene inducer, hesperetin. The deleterious effect of hesperetin might be due to its toxicity or to the toxicity of its degradation product(s) as indicated by the inhibition of root growth. Both the stimulatory effect of naringenin and the inhibitory effect of quercetin on nodule number were more pronounced at earlier stages of nodule development as revealed with specific staining of initial nodules. The lessening of the flavonoid impact during nodule development was ascribed to the plant autoregulatory mechanisms. Feedback regulation of nodule metabolism might also be responsible for the fact that the naringenin-conditioned increase in nodule number was not accompanied by any increase in nitrogenase activity. By contrast, the inhibitory action of quercetin and hesperetin on nodule number was associated with decreases in total nitrogenase activity. Naringenin also stimulated root hair curling (RHC) as one of the earliest nodulation responses at concentrations of 1 and 10 microg ml(-1), however, the same effect was exerted by the nod gene suppressor, quercetin, suggesting that feedback regulatory mechanisms control RHC in the range of nodulation-inhibiting high flavonoid concentrations. The comparison of the effect of the tested flavonoids in planta with nod gene activity response showed a two orders of magnitude shift to higher concentrations. This shift is explained by the absorption and degradation of flavonoids by both the symbionts during 3 d intervals between hydroponic solution changes. The losses were 99, 96.4, and 90% of the initial concentration of 10 micro g ml(-1) for naringenin, hesperetin, and quercetin, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erf016DOI Listing

Publication Analysis

Top Keywords

nod gene
20
nodule number
16
micro ml-1
16
nod genes
8
tested flavonoids
8
gene inducer
8
concentrations micro
8
naringenin inhibitory
8
gene suppressor
8
suppressor quercetin
8

Similar Publications

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

Knockdown of GSDMD inhibits pyroptosis in psoriasis by blocking the NOD-like receptor signaling pathway.

Int Immunopharmacol

January 2025

Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:

Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.

Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.

View Article and Find Full Text PDF

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

β-Cell Deletion of Hypoxia-Inducible Factor 1α (HIF-1α) Increases Pancreatic β-Cell Susceptibility to Streptozotocin.

Int J Mol Sci

December 2024

Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.

Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).

View Article and Find Full Text PDF

Exploring Immune Cell Infiltration and Small Molecule Compounds for Ulcerative Colitis Treatment.

Genes (Basel)

November 2024

Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands.

Background/objectives: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents for UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!