Macroscopic and microscopic in-situ observation of particles and gas bubbles are used to get precise impressions of the hydrodynamical characteristics of a biologically active suspension. Moreover, values of in-situ velocities and particle densities can be gained by using these methods. The suspended anaerobic sludge revealed an extensive fibrous structure ('fur') on its surface. The observed microfibers have a profound influence on the settling/flotation behavior of the particles because they increase the effective particle volume, they may trap gas bubbles and they favor agglomeration. The biomass particles do not appear as single spherical objects but due to its fibrous structure on the outside as strongly interacting mass. The compressibility of the bubbles which are entrapped in the sludge agglomerates results in a pressure-dependent density of the sludge particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(01)00511-5 | DOI Listing |
PLoS One
January 2025
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).
Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.
Water Res X
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.
View Article and Find Full Text PDFWaste Manag
January 2025
Energy and Sustainability Department (EES), Federal University of Santa Catarina (UFSC), 88905-120, Araranguá, SC, Brazil. Electronic address:
Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.
View Article and Find Full Text PDFReact Chem Eng
January 2025
Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
Light interacts with gas bubbles in various ways, potentially leading to photon losses in gas-liquid photochemical applications. Given that light is a valuable 'reagent', understanding these losses is crucial for optimizing reactor efficiency. In this study, we address the challenge of quantifying these interactions by implementing a method that separately determines the photon flux and utilizes actinometric experiments to determine the effective optical path length, a key descriptor of photon absorption.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!