Two strains of the yeast Candida lipolytica with a specific response to n-alkanes could grow on a medium with paraffins only in the case of contact of the cells with the particles of hydrocarbons. A mixture of paraffins with a solidification point of 35 degrees C contained 41.6% of n-alkanes with the carbon chain from C8 to C36. Assimilation of n-alkanes was studied along with the yeast growth in the course of fermentation. Penetration of the hydrocarbons into the yeast cells and the specificity of the substrates for both yeast strains are discussed.
Download full-text PDF |
Source |
---|
Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.
View Article and Find Full Text PDFBioresour Technol
January 2025
CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
This work investigates the optimization of medium-chain carboxylate (MCC) production through xylan mixed-culture monofermentation. The pH screening in batch assays showed that the hydrolysis stage and selectivity towards MCC precursors were optimised at pH 6. Subsequently, a continuous stirred tank reactor (CSTR) and a Sequential Batch Reactor (SBR) were operated at different Hydraulic Retention Times (HRT), revealing that the SBR at HRT 2 days yielded the highest caproic acid since lactic acid availability and chain elongation process were balanced.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, St. John's University, Queens, New York, USA. Electronic address:
One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China. Electronic address:
Point mutations were introduced into specific leucine (L) amino acids within the K domain of SHORT VEGETATIVE PHASE (SVP), and their effects on the SVP-AP1 interaction were assessed. Yeast two-hybrid experiments and β-galactosidase activity assays demonstrated that SVP maintained its capacity to interact with APETALA1 (AP1) despite point mutations at the 108th, 116th, 119th, and 127th leucine residues, where leucine was substituted with alanine (A). However, the mutation of the leucine residue at position 124 to alanine abolished the interaction between SVP and AP1 regardless of whether the mutation was singular or combined with others.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However, the specific pathway and enzymes involved in this process remain unclear due to limited genome sequencing and metabolic understanding of E. spinifera.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!