Molecular mechanisms underlying gonadotrope-specific and hormonal regulation of FSHbeta gene expression remain largely unknown. We have studied the role of pituitary homeobox 1 (Ptx1), a transcription factor important for regulation of many pituitary-specific genes, in the regulation of rat FSHbeta (rFSHbeta) gene transcription. We demonstrate that Ptx1 activates the rFSHbeta gene promoter both basally and in synergy with GnRH. The effect of Ptx1 was localized to -140/-50, a region also important for basal activity of the promoter. Two putative Ptx1 binding sites (P1 and P2) homologous to consensus Ptx1 binding elements were identified in this region. We demonstrate specific binding of Ptx1 to the P2 but not to the P1 site. Furthermore, functional studies indicate that the P2 but not the P1 site mediates activation of the promoter by Ptx1. Residual activation of the promoter by Ptx1 was observed independent of the P2 site. However, no additional Ptx1 binding sites were identified in this region, indicating that the residual activation observed is likely independent of direct Ptx1 binding to the promoter. These results identify a functional Ptx1 binding site in the rFSHbeta gene promoter and suggest the presence of an additional activating pathway that is independent of direct binding of Ptx1 to the promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2002-0088 | DOI Listing |
Mol Endocrinol
January 2005
Brigham and Women's Hospital and Harvard Medical School, Division of Endocrinology, Diabetes and Hypertension, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
Both activin and GnRH can independently stimulate expression of the FSHbeta subunit gene. In this study, we used the gonadotrope-derived LbetaT2 cell line to investigate the potential interaction between activin and GnRH in regulating the transcriptional activity of the rat FSHbeta gene promoter. Activin A and GnRH synergistically enhanced rat FSHbeta transcriptional activity.
View Article and Find Full Text PDFMol Endocrinol
August 2002
Endocrine-Hypertension Division, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
Molecular mechanisms underlying gonadotrope-specific and hormonal regulation of FSHbeta gene expression remain largely unknown. We have studied the role of pituitary homeobox 1 (Ptx1), a transcription factor important for regulation of many pituitary-specific genes, in the regulation of rat FSHbeta (rFSHbeta) gene transcription. We demonstrate that Ptx1 activates the rFSHbeta gene promoter both basally and in synergy with GnRH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!