Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes.

EMBO J

Institute of Reproductive and Developmental Biology, Imperial College Faculty of Medicine, Du Cane Road, London W12 0NN, UK.

Published: August 2002

SWI/SNF complexes are ATP-dependent chromatin remodelling enzymes that have been implicated in the regulation of gene expression in yeast and higher eukaryotes. BRG1, a catalytic subunit in the mammalian SWI/SNF complex, is required for transcriptional activation by the estrogen receptor, but the mechanisms by which the complex is recruited to estrogen target genes are unknown. Here, we have identified an interaction between the estrogen receptor and BAF57, a subunit present only in mammalian SWI/SNF complexes, which is stimulated by estrogen and requires both a functional hormone-binding domain and the DNA-binding region of the receptor. We also found an additional interaction between the p160 family of coactivators and BAF57 and demonstrate that the ability of p160 coactivators to potentiate transcription by the estrogen receptor is dependent on BAF57 in transfected cells. Moreover, chromatin immunoprecipitation assays demonstrated that BAF57 is recruited to the estrogen-responsive promoter, pS2, in a ligand-dependent manner. These results suggest that one of the mechanisms for recruiting SWI/SNF complexes to estrogen target genes is by means of BAF57.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126156PMC
http://dx.doi.org/10.1093/emboj/cdf412DOI Listing

Publication Analysis

Top Keywords

swi/snf complexes
12
estrogen receptor
12
chromatin remodelling
8
subunit mammalian
8
mammalian swi/snf
8
estrogen target
8
target genes
8
estrogen
6
baf57
5
targeting swi/snf
4

Similar Publications

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1 A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations.

View Article and Find Full Text PDF

The tumor suppressor gene SMARCA4, a critical component of the SWI/SNF chromatin remodeling complex, is frequently inactivated in various cancers, including clear cell renal cell carcinoma (ccRCC). Despite its significance, the role of SMARCA4 in ccRCC development and its potential therapeutic vulnerabilities have not been fully explored. Our research found that SMARCA4 deficiency was associated with poor prognosis and was observed in a subset of high-grade ccRCCs.

View Article and Find Full Text PDF

The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.

View Article and Find Full Text PDF

Epigenetic Regulation Via Electrical Forces.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Multiple epigenetic modulations occur to chromatin rather than to DNA itself and these influence gene expression or gene silencing profoundly. Both the creation of these post-translational modifications and the mechanisms of their readout are regulated significantly by electrical forces several of which are discussed. They are also influenced by phase separation which itself is driven by electrical forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!