Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin.

Br J Pharmacol

George P. Livanos Laboratory, Evangelismos Hospital, Department of Critical Care and Pulmonary Services, School of Medicine, Ploutarchou 3, 5th floor, University of Athens, Athens, Greece 10675.

Published: August 2002

1: We have previously shown that the flavonoid luteolin inhibits the expression of pro-inflammatory molecules induced by LPS. In the present study we tested the ability of luteolin to block signalling pathways implicated in LPS-induced inflammatory gene expression in macrophages. 2: Exposure of the murine macrophage cell line RAW 264.7 to LPS increased phosphorylation of the mitogen-activated protein kinase family members ERK1/2, p38 and JNK1/2 in a time-dependent manner. Pretreatment of RAW 264.7 with luteolin inhibited the LPS-induced ERK1/2 and p38, but not JNK1/2, phosphorylation, and blocked the LPS-induced TNF-alpha release. 3: To investigate which of these pathways contribute to the inhibitory effects of luteolin on TNF-alpha release, cells were pretreated with pharmacological inhibitors of these pathways; PD98059 and SB203580 when used alone failed to inhibit TNF-alpha release, whereas pretreatment with both agents attenuated TNF-alpha release. 4: We have previously shown that luteolin blocks Akt phosphorylation in response to LPS in RAW 264.7 macrophages. To determine the role of Akt in TNF-alpha release, cells were transiently transfected with a dominant negative form of Akt (K179M). Overexpression of K179M Akt did not alter LPS-induced TNF-alpha release, suggesting that inhibition of this kinase does not mediate the inhibitory action of luteolin. 5: In addition, DRB (a pharmacological inhibitor of CK2) blocked TNF-alpha release in a concentration-dependent manner, whereas co-treatment of cells with luteolin and DRB did not have an additive effect. 6: We conclude that luteolin interferes with LPS signalling by reducing the activation of several MAPK family members and that its inhibitory action on TNF-alpha release correlates with inhibition of ERK, p38 and CK2 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573431PMC
http://dx.doi.org/10.1038/sj.bjp.0704803DOI Listing

Publication Analysis

Top Keywords

tnf-alpha release
32
raw 2647
12
luteolin
9
flavonoid luteolin
8
family members
8
erk1/2 p38
8
p38 jnk1/2
8
tnf-alpha
8
lps-induced tnf-alpha
8
release
8

Similar Publications

Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.

Glia

January 2025

Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.

Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.

View Article and Find Full Text PDF

Background/purpose: -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses.

View Article and Find Full Text PDF

Chronic Stress Mediates Inflammatory Cytokines Alterations and Its Role in Tumorigenesis.

J Inflamm Res

January 2025

Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Introduction: Prolonged psychological stress is closely associated with cancer due to its role in promoting the release of stress hormones through the sustained activation of the sympathetic-adrenal-medullary system. These hormones interact with receptors on inflammatory cells, leading to the activation of key signaling pathways, including the transcription factors signal transducer and activator of transcription 3 (STAT-3) and kappa-light-chain-enhancer of activated B cells (NF-κB). These factors drive the production of pro-inflammatory substances, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which can influence the initiation and progression of cancer.

View Article and Find Full Text PDF

Background: Atherosclerosis serves as the fundamental pathology for a variety of cardiovascular disorders, with its pathogenesis being closely tied to the complex interplay among lipid metabolism, oxidative stress, and inflammation. Wogonoside is a natural flavonoid extracted from Scutellaria baicalensis with a variety of biological activities, including anti-inflammatory, hypolipidemic, and cardiac function improvement properties. Despite these known effects, the specific role of wogonoside in the context of atherosclerosis remains to be elucidated.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!