Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solar ultraviolet radiation, especially UVB (280-320 nm), has been hypothesized to be at least partially responsible for adverse effects (e.g., declines and malformations) in amphibian species throughout the world. Evaluation of this hypothesis has been limited by the paucity of high-quality UV dose-response data and reliable estimates of typical UV doses that occur in amphibian habitats. In this preliminary risk assessment for effects of UV radiation on amphibians, dose-response relationships quantified in outdoor experiments were compared with UV exposure estimates for 26 wetlands in northern Minnesota and Wisconsin. A comparison of wetland doses, derived from model prediction, historical data, and dissolved organic carbon (DOC) characterization, with experimental effects levels for green (R. clamitans), northern leopard (R. pipiens), and mink (R. septentrionalis) frogs indicated that the risk of mortality and malformations due to UV exposure is low for the majority of wetlands evaluated. Wetland UV dose, averaged over the entire breeding season, exceeded effects doses for mortality for all three species in two of the 26 wetlands examined and for one species in an additional wetland. On the basis of evidence that shorter term doses caused mortality in amphibian larvae, 3-day doses were also evaluated. In three of the wetlands examined, 3-day doses in excess of 85% of full sunlight (the level that appeared to trigger effects in controlled experimentation) occurred at frequencies ranging 22-100% for all three species and at frequencies ranging from 15% to 58% for R. pipiens and R. septentrionalis in three additional wetlands. Risk of malformation in R. pipiens was apparent in five of the 26 wetlands evaluated. Overall, estimated UVB doses in 21 of the wetlands never exceeded experimental effects doses for mortality or malformations. These results suggest that most amphibians are not currently at significant risk for UVB effects in northern Minnesota and Wisconsin wetlands. However, continued reduction of ozone and other global climate change effects may increase UV doses in wetlands, suggesting that the risk of UV to amphibians should continue to be monitored and studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es011197d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!