Despite the power of sequencing and of emerging high-throughput technologies to collect data rapidly, the definitive functional characterization of unknown genes still requires biochemical and genetic analysis in case-by-case studies. This often involves the deletion of target genes and phenotypic characterization of the deletants. We describe here modifications of an existing deletion method which facilitates the deletion process and enables convenient analysis of the expression properties of the target gene by replacing it with an FRT-lacZ-aph-P(lac)-FRT cassette. The lacZ gene specifically reports the activity of the deleted gene and therefore allows the determination of the conditions under which it is actively expressed. The aph gene, encoding resistance to kanamycin, provides a selectable means of transducing a deleted locus between strains so that the deletion can be combined with other relevant mutations. The lac promoter helps to overcome possible polar effects on downstream genes within an operon. Because the cassette is flanked by two directly repeated FRT sites, the cassette can be excised by the Flp recombinase provided in trans. Removing the cassette leaves an in-frame deletion with a short scar which should not interfere with downstream expression. Replacements of yacF, yacG, yacH, yacK (cueO), yacL, ruvA, ruvB, yabB, and yabC made with the cassette were used to verify its properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135234 | PMC |
http://dx.doi.org/10.1128/JB.184.16.4573-4581.2002 | DOI Listing |
JAMA Dermatol
January 2025
Centre for Molecular Medicine and Biobanking, University of Malta, Malta.
Importance: Variation in nicastrin (NCSTN) is associated with a monogenic subtype of hidradenitis suppurativa. Dysregulation of humoral immunity has been suggested as a potential mechanistic link between NCSTN variation and hidradenitis suppurativa. There is a paucity of biomarkers that can predict disease-associated variation.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFHepatol Commun
February 2025
Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFmSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!