Trehalose-mediated inhibition of the plasma membrane H+-ATPase from Kluyveromyces lactis: dependence on viscosity and temperature.

J Bacteriol

Departamento de Bioquímica, Instituto de Fisiología Celular, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, México.

Published: August 2002

The effect of increasing trehalose concentrations on the kinetics of the plasma membrane H+-ATPase from Kluyveromyces lactis was studied at different temperatures. At 20 degrees C, increasing concentrations of trehalose (0.2 to 0.8 M) decreased V(max) and increased S(0.5) (substrate concentration when initial velocity equals 0.5 V(max)), mainly at high trehalose concentrations (0.6 to 0.8 M). The quotient V(max)/S(0.5) decreased from 5.76 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the absence of trehalose to 1.63 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the presence of 0.8 M trehalose. The decrease in V(max) was linearly dependent on solution viscosity (eta), suggesting that inhibition was due to hindering of protein domain diffusional motion during catalysis and in accordance with Kramer's theory for reactions in solution. In this regard, two other viscosity-increasing agents, sucrose and glycerol, behaved similarly, exhibiting the same viscosity-enzyme inhibition correlation predicted. In the absence of trehalose, increasing the temperature up to 40 degrees C resulted in an exponential increase in V(max) and a decrease in enzyme cooperativity (n), while S(0.5) was not modified. As temperature increased, the effect of trehalose on V(max) decreased to become negligible at 40 degrees C, in good correlation with the temperature-mediated decrease in viscosity. The trehalose-mediated increase in S(0.5) was similar at all temperatures tested, and thus, trehalose effects on V(max)/S(0.5) were always observed. Trehalose increased the activation energy for ATP hydrolysis. Trehalose-mediated inhibition of enzymes may explain why yeast rapidly hydrolyzes trehalose when exiting heat shock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135241PMC
http://dx.doi.org/10.1128/JB.184.16.4384-4391.2002DOI Listing

Publication Analysis

Top Keywords

trehalose
10
trehalose-mediated inhibition
8
plasma membrane
8
membrane h+-atpase
8
h+-atpase kluyveromyces
8
kluyveromyces lactis
8
trehalose concentrations
8
micromol atp
8
atp protein-1
8
protein-1 min-1
8

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Significance: Artificial tears remain the cornerstone for managing dry eye disease. The current study's real-world efficacy test of carboxymethylcellulose (CMC), polyethylene glycol (PEG) 400, or sodium hyaluronate (SH)-based lubricants highlights their similar effects on noninvasive tear film parameters over the short term. However, patients reported better relief with SH-based lubricants.

View Article and Find Full Text PDF

Exogenous Trehalose Assists in Resisting High-Temperature Stress Mainly by Activating Genes Rather than Entering Metabolism.

J Fungi (Basel)

December 2024

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.

is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing to recover and proliferate under high-temperature stress during the adaptation period.

View Article and Find Full Text PDF

The concentration of small molecules reflects the normality of physiological processes in the human body, making the development of simple and efficient detection equipment essential. In this work, inspired by a facile strategy in point-of-care detection, two devices were fabricated to detect small molecules via photocurrent measurement. A linear response of the photocurrent against the concentration of the small molecules was found.

View Article and Find Full Text PDF

Trehalose and Mannitol Based Lyoprotetion of Taq DNA Polymerase for Cold-chain-free Long-term Storage.

J Pharm Sci

December 2024

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China. Electronic address:

Polymerase chain reactions (PCR) are most reliable and precise means for nucleic acid analysis of biological samples. A cold-chain system with temperature at around -20°C is generally necessary for storage and transportation of PCR-related reagents. In order to facilitate ambient temperature storage and transportation, this study prepared Taq DNA polymerase and 5 × HS-Taq Mix (as low as 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!