In this paper, the effect of process analyzer selection and positioning on plant-wide process monitoring is investigated. A fundamental problem in process analytical chemistry is the incomparability of different instrument characteristics. A fast but imprecise instrument is incomparable to a slow but precise instrument. Theory is developed to overcome this problem by using an abstract definition of a process analyzer. This definition allows us to put all instrument characteristics for a particular monitoring task on an equal footing. This results in a measurability factor M that expresses monitoring performance of any process measurement by combining instrument characteristics such as precision, sampling rate, grab size, response correlation, and delay time. Both the choice of location and the performance characteristics of different process analyzers can be evaluated using the measurability factor. The unifying nature of the measurability factor allows for a rational decision between completely different process analyzers and locations (Smilde et al., in this issue). The theory is illustrated and validated with an experiment. A tubular reactor for free-radical bulk polymerization of styrene is monitored by in-line short-wave near-infrared spectroscopy at different positions. Alternatively, product samples are collected for at-line near-infrared analysis. Both analyzers measure styrene monomer concentration. The analysis results are used to predict conversion as well as number and weight average molecular mass of the polystyrene reactor product. The theoretical measurability factors for this case study correspond well with the experimental findings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac020148wDOI Listing

Publication Analysis

Top Keywords

process analyzers
12
instrument characteristics
12
measurability factor
12
process
8
process analyzer
8
instrument
5
selection optimal
4
optimal process
4
analyzers
4
analyzers plant-wide
4

Similar Publications

Ecofriendly and biocompatible biochars derived from waste-branches for direct and efficient solid-phase extraction of benzodiazepines in crude urine sample prior to LC-MS/MS.

Mikrochim Acta

January 2025

School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.

Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

Background: This is a multicentre, European, prospective trial evaluating the diagnostic accuracy of One Step Nucleic Acid Amplification (OSNA) compared to sentinel lymph nodes histopathological ultrastaging in endometrial cancer patients.

Methods: Centres with expertise in sentinel lymph node mapping in endometrial cancer patients in Europe will be invited to participate in the study. Participating units will be trained on the correct usage of the OSNA RD-210 analyser and nucleic acid amplification reagent kit LYNOAMP CK19 E for rapid detection of metastatic nodal involvement, based on the cytokeratin 19 (CK19) mRNA detection.

View Article and Find Full Text PDF

Recent advancements in technology, such as the emergence of artificial intelligence (AI) and machine learning (ML), have facilitated the progression of the biopharmaceutical industry toward the implementation of Industry 4.0. As per the guidelines set by the USFDA, process validation for biopharmaceutical production consists of three stages: process design, process qualification, and continuous process verification (CPV).

View Article and Find Full Text PDF

Background: Urinalysis is a commonly performed test for the diagnosis and prognosis of kidney disease in hospitalized patients. It involves examining the chemical composition of the urine and microscopy to examine the cells and casts. In clinical settings, urinalysis is frequently delayed by several hours after sample collection and held at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!