Comparative analysis of genetic structure of two groups of Red Polish cattle, which reproduce in Poland and Ukraine, was made. Six molecular-genetic markers (kappa-casein, beta-lactoglobulin, leptin, myostatin, growth hormone, and pituitary-specific transcription factor Pit-I) were tested by PCR-RFLP. No significant differences between the considered intrabreed groups were found. High frequency of some alleles (Csn kappa B, Blg B, and Gh L) related to the important productivity traits were observed. The rare alleles in some genes were revealed. The obtained results are evidence of the unique characteristics of the investigated breed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

analysis genetic
8
genetic structure
8
red polish
8
polish cattle
8
[comparative analysis
4
structure red
4
cattle poland
4
poland ukraine]
4
ukraine] comparative
4
comparative analysis
4

Similar Publications

Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.

Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA.

Background: Participant dropout from study treatment in a clinical trial can leave a trial underpowered, produce bias in statistical analysis, and limit interpretability of study results. Retaining participants in clinical trials for the full study duration is therefore as important as participant recruitment. This analysis aims to identify the baseline characteristics of participants who discontinued during the blinded phase of one of the first and largest preclinical AD trial completed to date, the Anti-Amyloid treatment in Asymptomatic AD (A4) Study.

View Article and Find Full Text PDF

Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!