AI Article Synopsis

  • Two quantitative trait loci (QTLs) linked to peak relative bone mass were identified on chromosomes 11 and 13 in two mouse strains, SAMP2 and SAMP6, with SAMP6 being a model for senile osteoporosis that has lower bone mass.
  • The Chr 13 locus was designated as Pbd2 (Peak bone density 2), and congenic strains were created to investigate the impact of different genomic intervals on bone density, revealing that the P2.P6-Pbd2(a) strain had reduced bone density compared to the SAMP2 background.
  • A candidate gene investigation focused on Bmp6 (bone morphogenetic protein 6) showed that variations in CAG trinucleotide repeats within this gene correlate with

Article Abstract

Previously, we identified two significant quantitative trait loci (QTLs) specifying the peak relative bone mass (bone mass corrected for bone size) on chromosomes (Chrs) 11 and 13 by interval mapping in two mouse strains, SAMP2 and SAMP6. The latter strain is an established murine model of senile osteoporosis and exhibits a significantly lower peak relative bone mass than SAMP2 mice. We recently designated the Chr 13 locus as Pbd2 (Peak bone density 2) and constructed a congenic strain, P6.P2-Pbd2(b), which carried a single genomic interval from the Chr 13 of SAMP2 on a SAMP6-derived osteoporotic background. In this study, we have constructed a congenic strain, P2.P6-Pbd2(a), carrying a SAMP6-derived susceptible interval on a SAMP2-derived resistance background. This congenic strain had a lower bone density than the background strain, SAMP2, based on three measurement methods, each utilizing a different principle for evaluating bone density: MD, DXA, and pQCT. Next, a candidate gene approach was used to find polymorphisms of Bmp6 (bone morphogenetic protein 6). The CAG trinucleotide repeat numbers in exon 1 of this gene differ among SAM strains. We found an association of CAG repeat length with relative peak bone mass in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-001-2129-4DOI Listing

Publication Analysis

Top Keywords

bone density
16
bone mass
16
congenic strain
12
bone
10
candidate gene
8
peak relative
8
relative bone
8
peak bone
8
constructed congenic
8
strain
5

Similar Publications

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

Bone mineral density (BMD) measured with dual-energy X-ray absorptiometry (DXA) is widely used in clinical practice to assess fracture risk and guide management. DXA can also assess hip geometry, including femoral neck width (FNW) and hip axis length (HAL), which have both been associated with increased risk for hip fracture independently from BMD. Our objective was to assess if FNW predicts hip fracture independently from other factors including HAL.

View Article and Find Full Text PDF

Objective: Bone mineral density changes during the life span, rising rapidly during adolescence, plateauing around 30 years of age and decreasing in later years. Life events such as pregnancy and lactation temporarily reduce bone density, and their long-term effects on osteoporosis development are still unclear. This study aimed to analyse the association between pregnancy in adolescence and osteoporosis in aged women.

View Article and Find Full Text PDF

Background: The impact of fatty liver disease on lumbar bone mineral density (BMD) represents an intriguing area of study, particularly in light of established research linking obesity to bone metabolism. However, there remains limited investigation into the correlation between quantifying liver fat content (LFC) and lumbar BMD among overweight and obese populations, particularly within the Chinese demographic. This study aims to accurately quantify LFC and investigate its association with lumbar BMD in overweight or obese individuals.

View Article and Find Full Text PDF

Rationale: Osteoporosis is an abnormal reduction in bone mass and bone deterioration, leading to increased fracture risk. Alendronate belongs to the bisphosphonate class of drugs, which inhibit bone resorption by interfering with the activity of osteoclasts (bone cells that break down bone tissue). This is an update of a Cochrane review first published in 2008.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!