The DNA polymerases (gp43s) of the two related phages T4 and RB69 are DNA-binding proteins that also function as mRNA-binding autogenous translational repressors. As repressors, T4 gp43 is narrowly specific to its own mRNA whereas RB69 gp43 is equally effective against mRNA for either protein. We used in vitro RNase-sensitivity and RNA footprinting assays to identify features of the non-identical T4 and RB69 mRNA targets (translational operators) that allow for their identical binding affinities and biological responses to RB69 gp43. We observed that T4 gp43 and RB69 gp43 produce identical footprints on RNA substrates bearing the T4-derived operator, suggesting that the two gp43s make identical contacts with this operator. In contrast, the footprint produced by RB69 gp43 on its autogenous RNA target was shorter than its footprint on operator RNA from T4. As expected, we also observed only weak protection of RB69-derived operator RNA from RNase by T4 gp43; however, photocross-linking studies suggested that T4 gp43 recognizes structural features of the RB69-derived operator that are not detected by RNase- sensitivity assays. The results suggest that RB69 gp43 and T4 gp43 differ in their abilities to use RNA-sequence-independent interactions to configure potential RNA targets for translational repression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137073 | PMC |
http://dx.doi.org/10.1093/nar/gkf447 | DOI Listing |
Proteins
November 2016
Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062.
Understanding the origin of discrimination between rNTP and dNTP by DNA/RNA polymerases is important both for gaining fundamental knowledge on the corresponding systems and for advancing the design of specific drugs. This work explores the nature of this discrimination by systematic calculations of the transition state (TS) binding energy in RB69 DNA polymerase (gp43) and T7 RNA polymerase. The calculations reproduce the observed trend, in particular when they included the water contribution obtained by the water flooding approach.
View Article and Find Full Text PDFNucleic Acids Res
September 2016
Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3'-5' exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3'-5' exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA.
View Article and Find Full Text PDFViruses
January 2013
Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.
Viral polymerases are important targets in drug discovery and development efforts. Most antiviral compounds that are currently approved for treatment of infection with members of the herpesviridae family were shown to inhibit the viral DNA polymerase. However, biochemical studies that shed light on mechanisms of drug action and resistance are hampered primarily due to technical problems associated with enzyme expression and purification.
View Article and Find Full Text PDFBiochemistry
November 2011
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, United States.
5-Hydroxycytosine (5-OHC) is a stable oxidation product of cytosine associated with an increased frequency of C → T transition mutations. When this lesion escapes recognition by the base excision repair pathway and persists to serve as a templating base during DNA synthesis, replicative DNA polymerases often misincorporate dAMP at the primer terminus, which can lead to fixation of mutations and subsequent disease. To characterize the dynamics of DNA synthesis opposite 5-OHC, we initiated a comparison of unmodified dCMP to 5-OHC, 5-fluorocytosine (5-FC), and 5-methylcytosine (5-MEC) in which these bases act as templates in the active site of RB69 gp43, a high-fidelity DNA polymerase sharing homology with human replicative DNA polymerases.
View Article and Find Full Text PDFJ Mol Biol
September 2011
Department of Microbiology andMolecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA.
Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!