The recessive mutation at the mouse spinner (sr) locus results in hearing loss and vestibular dysfunction due to neuroepithelial defects in the inner ear. Using a positional cloning strategy, we have identified the mutant locus responsible for this pathology. The affected gene (Tmie) lies within a 40 kb deletion in the original sr allele. In a newly identified allele, Tmie contains a nonsense mutation expected to truncate the C-terminal end of its product. The 153 amino acid protein encoded by the gene shows no similarity to other known proteins, and is predicted to contain a signal peptide and at least one transmembrane domain. Tmie transcripts were identified in several tissues, including the cochlea. Loss of function of Tmie results in postnatal alterations of sensory hair cells in the cochlea, including defects in stereocilia, the apical projections of hair cells that are important in mechanotransduction of sound. These morphological defects are associated with a profound failure to develop normal auditory function. Consistent with a conserved role for this gene in the cochlea, the genetic mapping data presented here support human TMIE as the gene affected at DFNB6, a non-syndromic hearing loss locus. The spinner mutant is thus a valuable model for insight into mechanisms of human deafness and development of sensory cell function.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/11.16.1887DOI Listing

Publication Analysis

Top Keywords

hearing loss
12
gene tmie
8
sensory cell
8
defects inner
8
inner ear
8
hair cells
8
tmie
6
gene
5
mutation novel
4
novel gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!