Polarized cell movement is an essential requisite for cancer metastasis; thus, interference with the tumor cell motility machinery would significantly modify its metastatic behavior. Protein kinase C alpha (PKC alpha) has been implicated in the promotion of a migratory cell phenotype. We report that the phorbol ester-induced cell polarization and directional motility in breast carcinoma cells is determined by a 12-amino-acid motif (amino acids 313 to 325) within the PKC alpha V3 hinge domain. This motif is also required for a direct association between PKC alpha and beta 1 integrin. Efficient binding of beta 1 integrin to PKC alpha requires the presence of both NPXY motifs (Cyto-2 and Cyto-3) in the integrin distal cytoplasmic domains. A cell-permeant inhibitor based on the PKC-binding sequence of beta 1 integrin was shown to block both PKC alpha-driven and epidermal growth factor (EGF)-induced chemotaxis. When introduced as a minigene by retroviral transduction into human breast carcinoma cells, this inhibitor caused a striking reduction in chemotaxis towards an EGF gradient. Taken together, these findings identify a direct link between PKC alpha and beta 1 integrin that is critical for directed tumor cell migration. Importantly, our findings outline a new concept as to how carcinoma cell chemotaxis is enhanced and provide a conceptual basis for interfering with tumor cell dissemination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC133968PMC
http://dx.doi.org/10.1128/MCB.22.16.5897-5911.2002DOI Listing

Publication Analysis

Top Keywords

pkc alpha
20
beta integrin
16
tumor cell
12
protein kinase
8
cell
8
carcinoma cell
8
cell chemotaxis
8
breast carcinoma
8
carcinoma cells
8
alpha beta
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!