The prokaryotic post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Because of the structural similarity of RRF and tRNA, we compared the biochemical characteristics of RRF binding to ribosomes with that of tRNA. Unesterified tRNA inhibited the disassembly of the post-termination complex in a competitive manner with RRF, suggesting that RRF binds to the A-site. Approximately one molecule of ribosome-bound RRF was detected after isolation of the RRF-ribosome complex. RRF and unesterified tRNA similarly inhibited the binding of N-acetylphenylalanyl-tRNA to the P-site of non-programmed but not programmed ribosomes. Under the conditions in which unesterified tRNA binds to both the P- and E-sites of non-programmed ribosomes, RRF inhibited 50% of the tRNA binding, suggesting that RRF does not bind to the E-site. The results are consistent with the notion that a single RRF binds to the A- and P-sites in a somewhat analogous manner to the A/P-site bound peptidyl tRNA. The binding of RRF and tRNA to ribosomes was influenced by Mg(2+) and NH(4)(+) ions in a similar manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M206295200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!