The pathogenic yeast Candida albicans has the ability to synthesize unique sequences of beta-1,2-oligomannosides that act as adhesins, induce cytokine production, and generate protective antibodies. Depending on the growth conditions, beta-1,2-oligomannosides are associated with different carrier molecules in the cell wall. Structural evidence has been obtained for the presence of these residues in the polysaccharide moiety of the glycolipid, phospholipomannan (PLM). In this study, the refinement of purification techniques led to large quantities of PLM being extracted from Candida albicans cells. A combination of methanolysis, gas chromatography, mass spectrometry, and nuclear magnetic resonance analyses allowed the complete structure of PLM to be deduced. The lipid moiety was shown to consist of a phytoceramide associating a C(18)/C(20) phytosphingosine and C(25), C(26), or mainly C(24) hydroxy fatty acids. The spacer linking the glycan part was identified as a unique structure: -Man-P-Man-Ins-P-. Therefore, in contrast to the major class of membranous glycosphingolipids represented by mannose diinositol phosphoceramide, which is derived from mannose inositol phosphoceramide by the addition of inositol phosphate, PLM seems to be derived from mannose inositol phosphoceramide by the addition of mannose phosphate. In relation to a previous study of the glycan part of the molecule, the assignment of the second phosphorus position leads to the definition of PLM beta-1,2-oligomannosides as unbranched linear structures that may reach up to 19 residues in length. Therefore, PLM appears to be a new type of glycosphingolipid, which is glycosylated extensively through a unique spacer. The conferred hydrophilic properties allow PLM to diffuse into the cell wall in which together with mannan it presents C. albicans beta-1,2-oligomannosides to host cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M202295200 | DOI Listing |
J Med Chem
January 2025
The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.
Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism.
View Article and Find Full Text PDFSci Rep
January 2025
Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str, P.O. 12622, Dokki Giza, Egypt.
A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.
View Article and Find Full Text PDFSci Rep
January 2025
Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt.
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!