Guanylin and uroguanylin are newly discovered intestinal peptides that have been shown to affect NaCl transport in both the intestine and kidney. The present study tests the hypothesis that guanylin and uroguanylin mRNA expression in each major region of the intestine is regulated by NaCl intake. Semiquantitative multiplex RT-PCR analysis was used to determine the molecular expression of guanylin and uroguanylin in the duodenum, jejunum, ileum, and colon in rats maintained on low (LS), normal (NS), or high (HS) NaCl intake for 4 days. LS intake reduced the expression of uroguanylin, and to a lesser degree, guanylin mRNA in all intestinal segments compared to NS intake. The duodenum was the site of the greatest decrease for both. In contrast, HS intake significantly increased the expression of guanylin mRNA only in the duodenum and jejunum and had minimal effect on uroguanylin mRNA. The minimum time required for altered gene expression was determined by delivering an oral NaCl challenge directly to the gastrointestinal tract by oro-gastric administration to LS or NS animals. In LS rats, NaCl oro-gastric administration significantly increased mRNA expression of both peptides in all intestinal segments. Furthermore, the increases in guanylin and uroguanylin mRNA were detected within 4 h and plateaued by 8 h. Conversely, acute oro-gastric administration of the same NaCl solution to NS rats caused elevations of guanylin mRNA only in the duodenum and jejunum, and of uroguanylin mRNA only in the ileum and colon. In conclusion, the data demonstrate that variations in NaCl intake lead to intestinal segment-specific changes in guanylin and uroguanylin mRNA expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-0115(02)00069-1 | DOI Listing |
J Pept Sci
January 2025
Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.
Guanylate cyclase C (GC-C), a receptor expressed on the apical membrane of intestinal mucosal cells, is activated by heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli, as well as the endogenous ligands guanylin and uroguanylin. In this study, novel peptides that interact with GC-C were generated using the cDNA display method, and their binding affinity and biological activity were evaluated. While the linear peptide library did not yield peptides with sufficient affinity for GC-C, three cyclic peptides (GCC-P1, GCC-P2, and GCC-P3), each containing two cysteine residues within a 15-residue sequence, were obtained from a cyclic peptide library containing nine-residue random sequences.
View Article and Find Full Text PDFJ Pept Sci
January 2025
Marine Biotechnology, NORCE Norwegian Research Centre, Bergen, Norway.
Enterotoxigenic Escherichia coli (ETEC) strains, which produce the heat-stable enterotoxin (ST) either alone or in combination with the heat-labile enterotoxin, contribute to the bulk of the burden of child diarrheal disease in resource-limited countries and are associated with mortality. Developing an effective vaccine targeting ST presents challenges due to its potent enterotoxicity, non-immunogenicity, and the risk of autoimmune reaction stemming from its structural similarity to the human endogenous ligands, guanylin, and uroguanylin. This study aimed to assess a novel synthetic vaccine carrier platform employing a single chemical coupling step for making human ST (STh) immunogenic.
View Article and Find Full Text PDFJ Biol Chem
January 2024
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India. Electronic address:
Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events.
View Article and Find Full Text PDFFront Oncol
October 2023
Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Colorectal cancer (CRC) is a devastating disease that affects millions of people worldwide. Recent research has highlighted the crucial role of the guanylate cyclase-C (GC-C) signaling axis in CRC, from the early stages of tumorigenesis to disease progression. GC-C is activated by endogenous peptides guanylin (GU) and uroguanylin (UG), which are critical in maintaining intestinal fluid homeostasis.
View Article and Find Full Text PDFActa Stomatol Croat
September 2023
Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia.
Objectives: Guanylin peptides are considered to be the only intrinsic regulators of salivary glands secretion. Therefore, the aim of this study was to determine the effects of systemic uroguanylin (UGN) of the salivary flow and ion composition. Besides, the objective was to investigate whether those effects include activation of guanylate cyclase C (GC-C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!