Sensitivity to growth suppression by 1alpha,25-dihydroxyvitamin D(3) among MCF-7 clones correlates with Vitamin D receptor protein induction.

J Steroid Biochem Mol Biol

Department of Biochemistry, LEO Pharma A/S, Industriparken 55, DK-2750 Ballerup, Denmark.

Published: June 2002

The antiproliferative effect of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) has been studied for a decade in diverse model systems, but the signalling pathways linking 1alpha,25(OH)(2)D(3) to cell cycle arrest remains unclear. In our attempt to establish a model system which would allow further identification of important players in the process of the 1alpha,25(OH)(2)D(3) imposed cell cycle arrest, we have isolated derivatives of the human breast cancer cell line MCF-7 and chosen two nearly 1alpha,25(OH)(2)D(3) resistant and two hypersensitive sub-clones. Investigation of cell cycle proteins regulated by 1alpha,25(OH)(2)D(3) in these clones indicates that activation of one component/pathway is responsible for the linkage between 1alpha,25(OH)(2)D(3) and growth arrest. Protein levels of the Vitamin D receptor (VDR) were elevated in sensitive cells upon 1alpha,25(OH)(2)D(3) treatment, whereas resistant clones were unable to induce VDR upon 1alpha,25(OH)(2)D(3) treatment. Our data show that VDR protein levels and the ability of a cell to induce VDR upon 1alpha,25(OH)(2)D(3) treatment correlate with the antiproliferative effects of 1alpha,25(OH)(2)D(3), and suggest that the level of VDR in cancer cells might serve as a prognostic marker for treatment of cancer with 1alpha,25(OH)(2)D(3) analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-0760(02)00057-2DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
1alpha25oh2d3 treatment
12
1alpha25oh2d3
11
vitamin receptor
8
cycle arrest
8
protein levels
8
induce vdr
8
vdr 1alpha25oh2d3
8
cell
5
vdr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!