Biochemistry and genetics of interorganelle aminoglycerophospholipid transport.

Semin Cell Dev Biol

Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA.

Published: June 2002

The organelle specific reactions that constitute the biosynthetic pathway for aminoglycerophospholipid synthesis provide an important means for examining the biochemistry and genetics of intracellular lipid transport. Biochemical studies with intact and permeabilized cells, and isolated organelles have defined some of the essential features of lipid transport between the endoplasmic reticulum and mitochondria and Golgi/vacuole. Genetic screens have now also identified mutations and genes that are involved in aminoglycerophospholipid traffic between different membranes in mammalian cells, yeast and bacteria. Increasingly, studies focused upon intermembrane lipid movement are revealing important new information about this essential aspect of membrane biogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1084-9521(02)00047-2DOI Listing

Publication Analysis

Top Keywords

biochemistry genetics
8
lipid transport
8
genetics interorganelle
4
interorganelle aminoglycerophospholipid
4
aminoglycerophospholipid transport
4
transport organelle
4
organelle specific
4
specific reactions
4
reactions constitute
4
constitute biosynthetic
4

Similar Publications

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Bacterial endospores are ubiquitous and are responsible for various human infections. Recently, we reported that an ionic liquid (IL)-based sample preparation method (named pTRUST) facilitated highly efficient shotgun analysis of the Bacillus subtilis spore proteome in trace samples. In this study, we evaluated the efficiency and applicability of the pTRUST technology using three different spore preparations: one purified from the closely related subspecies B.

View Article and Find Full Text PDF

Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!