Labelling of fine sediment (phi < 62.5 microm) with 99mTc was achieved through laboratory experiments described in a previous work (Proceedings of an International Symposium on Isotope Techniques in Water Resources Development and Management. IAEA-SM-361/13, Vienna, Proceedings of the XIIIth Brazilian Symposium on Water Resources. Brazilian Association for Water Resources (ABRH), Belo Horizonte, paper 176, CD-rom (in Portuguese)). Comparative studies of the hydrodynamic behaviour of the labelled and unlabelled sediment, in order to validate the application of the labelled sediment in field studies, were further performed by means of sedimentation tests using the Andreasen pipette technique, and are presented here. Labelling without flocculation, which promotes the same sedimentation behaviour of the labelled and the natural sediment was only achieved using small quantities of SnCl2 dissolved in proportionately small volumes of HCI (0.3%), in the reduction of a 99mTcO4- eluted from a 99Mo generator.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0969-8043(02)00068-4DOI Listing

Publication Analysis

Top Keywords

water resources
12
behaviour labelled
8
development technique
4
technique 99mtc
4
99mtc adsorbable
4
adsorbable tracer
4
tracer hydrodynamic
4
hydrodynamic studies
4
studies fine
4
fine sediments
4

Similar Publications

Precession modulates the poleward expansion of atmospheric circulation to the Arctic Ocean.

Nat Commun

January 2025

Centre for Marine Magnetism (CM2, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Under sustained global warming, Arctic climate is projected to become more responsive to changes in North Pacific meridional heat transport as a result of teleconnections between low and high latitudes, but the underlying mechanisms remain poorly understood. Here, we reconstruct subarctic humidity changes over the past 400 kyr to investigate the role of low-to-high latitude interactions in regulating Arctic hydroclimate. Our reconstruction is based on precipitation-driven sediment input variations in the Subarctic North Pacific (SANP), which reveal a strong precessional cycle in subarctic humidity under the relatively low eccentricity variations that dominated the past four glacial-interglacial cycles.

View Article and Find Full Text PDF

Unexpected species diversity in the understanding of selenium-containing soil invertebrates.

Sci Rep

January 2025

Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, 438000, Hubei, China.

Yutangba, situated in Enshi City, Hubei Province, is globally noted for its high selenium (Se) content. Soil invertebrates are essential to the functionality and services of terrestrial ecosystems, yet their community composition in this region remains under-explored. This study utilized environmental DNA metabarcoding to investigate the interrelations among environmental factors, soil invertebrate diversity, and community characteristics concerning soil Se content, pH, and moisture content in the region.

View Article and Find Full Text PDF

Owing to the differences in sedimentary environments in the mining areas of western China, the mechanical properties of rocks in this region are significantly different from those in the central and eastern regions. Therefore, uniaxial cyclic loading-unloading tests were conducted on fine sandstone found in many roof rocks to study the evolution laws of mechanical properties, deformation characteristics, acoustic emission (AE) parameters, and energy under cyclic loading and unloading conditions. The accumulated residual strain, dissipative energy, acoustic emission cumulative ringing counts, and cumulative energy were introduced to characterize the degree of rock damage.

View Article and Find Full Text PDF

Speciation, Distribution and Environmental Risk of Dominant Silver-Containing Nanoparticles in the Taihu Lake, China.

Environ Pollut

January 2025

School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.

Silver-containing nanoparticles (AgCNPs) have attracted increasing concerns because of their potential adverse effects on aquatic ecosystems. However, minimal information is available regarding their concentration, distribution, and speciation in the actual environment. In this work, different species of AgCNPs, including silver nanoparticles (AgNPs), silver chloride (AgCl NPs) and silver sulfide (AgS NPs) in water and sediment samples from Taihu Lake were analyzed by a multistep selective dissolution method combined with single-particle inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Promoting caproate production using anaerobically digested sludge-derived biochar: Performances, mechanisms, and environmental impacts.

Bioresour Technol

January 2025

School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Carbon chain elongation offers a promising pathway for converting waste resources into caproate. However, challenges in yield and selectivity have limited its broader application. To address these limitations, anaerobically digested sludge-derived biochar (ADS-B) was incorporated into the carbon chain elongation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!