Kalpakkam mini (KAMINI) reactor is the newest research reactor built in India. Operated at the Indira Gandhi Centre for Atomic Research, Kalpakkam, it has the unique distinction of being the only operating pool-type reactor in the world at present fuelled by 233U and aluminium alloy. Neutron spectra have been measured by the multi-foil irradiation method at the beam tube ends of this reactor. The spectra unfolding have been done, by using SAND-II computer code. Thus the total and thermal flux at the beam tube ends have been measured. The theoretical spectrum generated by the computer codes SMAXY and COMESH and WIMS cross-section data library was compared with the measured spectrum for one of the beam tubes and found to match well. A new 620-group cross-section data library generated at our centre was tested with SAND-II for the same set of measurements. Use of the new library results in slightly higher measured total fluxes and smoother spectra shapes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0969-8043(02)00079-9DOI Listing

Publication Analysis

Top Keywords

neutron spectra
8
kalpakkam mini
8
beam tube
8
tube ends
8
cross-section data
8
data library
8
reactor
5
measurement prediction
4
prediction neutron
4
spectra
4

Similar Publications

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Liquid-Vapor Phase Equilibrium in Molten Aluminum Chloride (AlCl) Enabled by Machine Learning Interatomic Potentials.

J Phys Chem B

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl molten salt across varied thermodynamic conditions ( = 473-613 K and = 2.

View Article and Find Full Text PDF

Quantum magnetic materials can provide explicit realizations of paradigm models in quantum many-body physics. In this context, SrCu_{2}(BO_{3})_{2} is a faithful realization of the Shastry-Sutherland model for ideally frustrated spin dimers, even displaying several of its quantum magnetic phases as a function of pressure. We perform inelastic neutron scattering measurements on SrCu_{2}(BO_{3})_{2} at 5.

View Article and Find Full Text PDF

Platform development toward ultra-intense laser-based simultaneous hard x-ray and MeV neutron multimodal radiography.

Rev Sci Instrum

December 2024

Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample.

View Article and Find Full Text PDF

Liquid scintillator consists of an organic solvent and one or more scintillation solutes, which can emit light pulses after absorbing X- and γ-rays, or high-energy particles. It has the characteristics of strong neutron/γ-ray (n/γ) discrimination, short decay time, unlimited size and low cost, which plays an important role in high-sensitivity and large-scale radiation detection, especially in the construction and safe operation of nuclear facilities. However, the impact of solvent selection and moisture content on the fluorescence-scintillation properties of scintillators has not been adequately investigated in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!