Catheters, urethral and ureteral stents and other urological implants are frequently affected by encrustration and infection due to their permanent contact with urine. Indwelling urinary catheters provide a haven for microorganisms and thus require extensive monitoring. Several surface modification techniques have been proposed to improve the performance of devices including the immobilization of biomolecules, the incorporation of hydrophilic grafts to reduce protein adsorption, the creation of hydrophobic surfaces, the creation of microdomains to regulate cellular and protein adhesion, new polymers and antimicrobial coatings. Physico-chemical explanation to elucidate the mechanism of such encrustation or infection inhibiting materials is still not available. Our series of experiments showed a marked decrease of silver-activity in biological fluids which corresponds with the controversial clinical results obtained with silver coated urinary catheters. Rifampicin/minocycline coated catheters had very low activity against Gram-negative rods, enterococci and Candida spp., the main causing organisms of urinary catheter infection. Surface engineered materials and antimicrobial drug delivery systems will be the next generation of sophisticated urinary catheters and stents, if both efficacy as well as efficiency has been proved clinically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0924-8579(02)00096-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!