In vitro reactivity for each of four osteolathyrogens with a model compound for the lysyl oxidase (LO) cofactor was evaluated and coupled with mixture toxicity testing to evaluate agent-cofactor reactivity as a potential mechanism of action for osteolathyrism. Reactivity of the model cofactor (mLTQ: 4-butylamino-5-methyl-o-quinone), with each of two ureides, semicarbazide (SC) and thiosemicarbazide (TSC), and each of two aminonitriles, aminoacetonitrile (AAN) and beta-aminopropionitrile (betaAPN), was assessed using UV-vis spectrophotometry; both in the absence and presence of Cu(II)-bipyridine (bipy) complex. Two sets of mixture toxicity experiments were conducted using a frog embryo assay that assessed the incidence of osteolathyrism in the notochord of tadpoles after 96-h exposure. The resulting concentration-response curves for each set were evaluated (chi(2) goodness-of-fit test) against theoretical curves for two combined effects models: dose-addition and independence, to determine the combined effect of each osteolathyrogen combination. The agents SC, TSC and AAN each showed rapid, irreversible reactivity with mLTQ, both in the absence and presence of Cu(II)-bipy complex, as indicated by bleaching of the mLTQ peak (504 nm) and formation of an adduct at 350 nm. betaAPN showed no apparent reactivity in the absence of prolonged incubation with mLTQ, whether Cu(II)-bipy complex was present or not. After prolonged incubation (24-144 h) a new peak formed at 350 nm, suggesting that betaAPN reacts weakly with the cofactor, but in a manner different from the other agents examined. The toxicity tests indicated a dose-additive combined effect for the SC:TSC, AAN:SC and AAN:SC:TSC mixtures (0.1

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-483x(02)00233-0DOI Listing

Publication Analysis

Top Keywords

agent-cofactor reactivity
8
mechanism action
8
action osteolathyrism
8
mixture toxicity
8
absence presence
8
cuii-bipy complex
8
prolonged incubation
8
reactivity
6
biochemical toxicological
4
toxicological evaluation
4

Similar Publications

Single-chemical and mixture concentration-response curves generated using a frog embryo model were examined for value in assessing whether chemicals exert toxic effects at the same or at different molecular sites of action. Toxicity tests were conducted on a series of osteolathyrogens, i.e.

View Article and Find Full Text PDF

In vitro reactivity for each of four osteolathyrogens with a model compound for the lysyl oxidase (LO) cofactor was evaluated and coupled with mixture toxicity testing to evaluate agent-cofactor reactivity as a potential mechanism of action for osteolathyrism. Reactivity of the model cofactor (mLTQ: 4-butylamino-5-methyl-o-quinone), with each of two ureides, semicarbazide (SC) and thiosemicarbazide (TSC), and each of two aminonitriles, aminoacetonitrile (AAN) and beta-aminopropionitrile (betaAPN), was assessed using UV-vis spectrophotometry; both in the absence and presence of Cu(II)-bipyridine (bipy) complex. Two sets of mixture toxicity experiments were conducted using a frog embryo assay that assessed the incidence of osteolathyrism in the notochord of tadpoles after 96-h exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!