The human T-cell leukemia virus type-2 (HTLV-2) integrase (IN) catalyzes the insertion of the viral genome into the host chromosome. HTLV-2 IN was expressed as an N-terminal hexa-histidine tagged protein in the methylotrophic yeast Pichia pastoris and as a C-terminal hexa-histidine fusion in Escherichia coli. Maximal IN expression was observed at 48h post-induction for the yeast system and 2h post-induction for E. coli. Effective purification strategies were developed using non-ionic and zwitterionic detergents for initial protein extraction, followed by a one-step nickel-chelating chromatography purification. IN from both sources was routinely greater than 90% pure with yields exceeding 1.5mg of purified IN per liter of culture for P. pastoris. The relative pI was defined for both INs, pH 5.0-5.4, by 2D-gel electrophoresis. Specific activities for IN purified from E. coli and P. pastoris were calculated from in vitro 3(') processing assays and were comparable. In vitro IN assays were also performed to optimize reaction buffer pH and metal concentrations for both 3(') processing and strand transfer assays. Strand transfer was optimal from pH 6.2-6.8, more than 1.5 pH units below the optimal 3(') processing pH of 8.3. IN from both sources showed no enhancement in activity with MnCl(2) concentrations greater than 5mM. The specific activity of P. pastoris purified IN was 0.35 product (pmol)/h/microg IN, and E. coli produced IN was 0.48 product (pmol)/h/microg IN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1046-5928(02)00011-6DOI Listing

Publication Analysis

Top Keywords

human t-cell
8
t-cell leukemia
8
leukemia virus
8
escherichia coli
8
pichia pastoris
8
strand transfer
8
product pmol/h/microg
8
coli
5
pastoris
5
comparative study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!