A system for the quantitative analysis of ligand-receptor interactions is presented, based on models of different levels of complexity. For two pools of receptors, binding of a radioactive ligand is described by b = [(Bml x A(nl))/(K(nl)dl + A(nl))] + [(Bm2 x A(n2))/(Kn2(d2) + A(n2))], (1) where b is the number of bound receptors at a ligand concentration [A], Bml and Bm2 are the receptor concentrations. Kdl and Kd2 are dissociation constants for the ligand-receptor complex, and n1 and n2 are Hill coefficients. The magnitude of the physiological response for a system consisting of two discrete pools of receptors with different affinities is given by p = [(Pm x A(nl))/(EC50(nl) + A(nl))] + [(Pm2 x A(n2)/(EC50(n2)2 + A(n2))], (2) where p is the magnitude of the response to an agonist (or antagonist) at concentration [A], Pml and Pm2 are the maximal magnitudes of the responses for the individual pools of receptors, EC50(1) and EC50(2) are the agonist concentrations giving responses of magnitudes Pm1/2 and Pm2/2, and n1 and n2 are Hill coefficients. The parameters of these equations show: the number of pools of receptors with different affinities for the ligand (Kd or EC50), the number of active receptors (Bmax) or the magnitudes of the maximal response (Pmax), and the numbers of ligand molecules binding with the receptor (n, the Hill coefficient). E is the efficiency (E = Bmax/2Kd, or E = Pmax/2EC50) and gives the overall characteristics of the activity of the effector system. This method of analysis can be applied to any biological reactions whose results can be presented quantitatively.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015014408089DOI Listing

Publication Analysis

Top Keywords

pools receptors
16
analysis ligand-receptor
8
ligand-receptor interactions
8
concentration [a]
8
hill coefficients
8
receptors affinities
8
receptors
6
interactions molecular
4
molecular level
4
level whole-body
4

Similar Publications

The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK.

View Article and Find Full Text PDF

Dysregulation of integral membrane proteins (IMPs) has been linked to a myriad of diseases, making these proteins an attractive target in drug research. Whilst PROTAC technology has had a significant impact in scientific research, its application to IMPs is still limited. Limitations of the traditional approach of immunoblotting in PROTAC research include the low throughput compared to other methods, as well as a lack of spatial information for the target.

View Article and Find Full Text PDF

The olfactory organ of Synechogobius hasta was investigated with a focus on its environmental adaptation, using stereo microscopy and light microscopy. This research revealed the following anatomical and histological characteristics: (i) tubular anterior nostril, (ii) one longitudinal lamella, (iii) two accessory nasal sacs, (iv) lymphatic cells in the lower part of the sensory epithelium, (v) four to five villi of olfactory receptor neurons, (vi) abundant blood capillaries beneath the sensory epithelium, and (vii) rod-shaped erythrocytes. These findings hint that the olfactory organ of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!