The isocratic retention of enantiomers of chiral analytes, i.e. tryptophan, 1,2,3,4-tetrahydroisoquinoline and gamma-butyrolac tone analogs, was studied on a ristocetin A chiral stationary phase at different temperatures and with different mobile phase compositions, using the reversed-phase, polar-organic and normal-phase modes. By variation of the both mobile phase composition and the temperature, baseline separations could be achieved for these enantiomers. The retention factors and selectivity factors for the enantiomers of all investigated compounds decreased with increasing temperature. The natural logarithms of the retention factors (ln k) of the investigated compounds depended linearly on the inverse of temperature (1/T). van't Hoff plots afforded thermodynamic parameters, such as the apparent change in enthalpy (deltaH(o)), the apparent change in entropy (deltaS(o)) and the apparent change in Gibbs free energy (deltaG(o) ) for the transfer of analyte from the mobile to the stationary phase. The thermodynamic parameters (deltaH(o), deltaS(o) and deltaG(o)) were calculated in order to promote an understanding of the thermodynamic driving forces for retention in this chromatographic system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(02)00390-4DOI Listing

Publication Analysis

Top Keywords

stationary phase
12
apparent change
12
ristocetin chiral
8
chiral stationary
8
mobile phase
8
retention factors
8
investigated compounds
8
thermodynamic parameters
8
retention
5
phase
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!