Moving the upper limbs at a common tempo according to an in-phase or anti-phase mode represents elementary coordination dynamics. Previously, the role of the supplementary motor area (SMA) has been emphasized for successful production of these patterns. The objective of this study was to investigate whether repetitive transcranial magnetic stimulation (rTMS) of the SMA at 5 Hz can interfere with these isofrequency configurations in the post-stimulation stage. Results showed a deterioration of temporal control as a function of coordinative complexity. This effect was associated with a decrease in the functional coupling between the primary motor cortices, as measured by electroencephalographic coherence. These data suggest that rTMS of the SMA can modify interhemispheric communication and accordingly modulate interlimb behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3940(02)00499-8 | DOI Listing |
Brain Res
January 2025
Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.
View Article and Find Full Text PDFJ Pain Res
January 2025
School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
Purpose: Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition characterized by sensory, motor, and autonomic dysfunction with a world-wide prevalence of 26.2 per 100,000 people per year and is 3 to 4 times more prevalent in females. Repetitive transcranial magnetic stimulation (rTMS) has shown to be beneficial for pain relief in neuropathic pain and initial evidence in CRPS is promising, but studies are limited.
View Article and Find Full Text PDFBackground: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.
View Article and Find Full Text PDFBackground: Studies across multiple addictions have suggested that repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (L-DLPFC) reduces cue-induced-craving (CIC), however there are no studies in treatment seeking participants with cannabis use disorder (CUD). In this secondary analysis of a previously completed trial, we explore whether a multi-session course of rTMS reduces CIC in CUD.
Methods: Seventy-one participants with ≥moderate CUD (age=30.
Cogn Neurodyn
December 2025
CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran.
The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!