Previous research has demonstrated that the localization of auditory or tactile stimuli can be biased by the simultaneous presentation of a visual stimulus from a different spatial position. We investigated whether auditory localization judgments could also be affected by the presentation of spatially displaced tactile stimuli, using a procedure designed to reveal perceptual interactions across modalities. Participants made left-right discrimination responses regarding the perceived location of sounds, which were presented either in isolation or together with tactile stimulation to the fingertips. The results demonstrate that the apparent location of a sound can be biased toward tactile stimulation when it is synchronous, but not when it is asynchronous, with the auditory event. Directing attention to the tactile modality did not increase the bias of sound localization toward synchronous tactile stimulation. These results provide the first demonstration of the tactile capture of audition.

Download full-text PDF

Source
http://dx.doi.org/10.3758/bf03194730DOI Listing

Publication Analysis

Top Keywords

tactile stimulation
12
tactile
8
tactile stimuli
8
tactile "capture"
4
"capture" audition
4
audition previous
4
previous demonstrated
4
demonstrated localization
4
localization auditory
4
auditory tactile
4

Similar Publications

Cognitive response to energy variations in Non-Contact tactile sensations interface using Laser-Induced plasma.

Neurosci Lett

January 2025

Department of Biomedical Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, 268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Republic of Korea. Electronic address:

Laser-induced plasma technology provides a novel method for generating tactile sensations without physical contact, offering precise and controlled stimulation. However, the impact of varying energy levels on human cognitive and perceptual responses is not yet fully understood. This study aimed to present tactile sensations using laser-induced plasma in a non-contact manner and investigate the cognitive characteristics linked to changes in the plasma's energy parameters, specifically Pulse Width (PW) and Set Current (SC).

View Article and Find Full Text PDF

An organic electrochemical neuron for a neuromorphic perception system.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.

Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.

View Article and Find Full Text PDF

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

The Interplay Between Muscular Activity and Pattern Recognition of Electro-Stimulated Haptic Cues During Normal Walking: A Pilot Study.

Bioengineering (Basel)

December 2024

School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak District, Seoul 06974, Republic of Korea.

This pilot study explored how muscle activation influences the pattern recognition of tactile cues delivered using electrical stimulation (ES) during each 10% window interval of the normal walking gait cycle (GC). Three healthy adults participated in the experiment. After identifying the appropriate threshold, ES as the haptic cue was applied to the gastrocnemius lateralis (GL) and biceps brachii (BB) of participants walking on a treadmill.

View Article and Find Full Text PDF

EMG feedback improves force control of a myoelectric hand prosthesis by conveying the magnitude of the myoelectric signal back to the users via tactile stimulation. The present study aimed to test if this method can be used by a participant with a high-level amputation, and whose muscle used for prosthesis control (pectoralis major) was not intuitively related to hand function. Vibrotactile feedback was delivered to the participant's torso, while the control was tested using EMG from three different muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!