A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of chronic illness care (ACIC): a practical tool to measure quality improvement. | LitMetric

Assessment of chronic illness care (ACIC): a practical tool to measure quality improvement.

Health Serv Res

MacColl Institute for Healthcare Innovation, Center for Health Studies, Group Health Cooperative of Puget Sound, Seattle, WA 98101-1448, USA.

Published: June 2002

Objective: To describe initial testing of the Assessment of Chronic Illness Care (ACIC), a practical quality-improvement tool to help organizations evaluate the strengths and weaknesses of their delivery of care for chronic illness in six areas: community linkages, self-management support, decision support, delivery system design, information systems, and organization of care.

Data Sources: (1) Pre-post, self-report ACIC data from organizational teams enrolled in 13-month quality-improvement collaboratives focused on care for chronic illness; (2) independent faculty ratings of team progress at the end of collaborative.

Study Design: Teams completed the ACIC at the beginning and end of the collaborative using a consensus format that produced average ratings of their system's approach to delivering care for the targeted chronic condition. Average ACIC subscale scores (ranging from 0 to 11, with 11 representing optimal care) for teams across all four collaboratives were obtained to indicate how teams rated their care for chronic illness before beginning improvement work. Paired t-tests were used to evaluate the sensitivity. of the ACIC to detect system improvements for teams in two (of four) collaboratives focused on care for diabetes and congestive heart failure (CHF). Pearson correlations between the ACIC subscale scores and a faculty rating of team performance were also obtained.

Results: Average baseline scores across all teams enrolled at the beginning of the collaboratives ranged from 4.36 (information systems) to 6.42 (organization of care), indicating basic to good care for chronic illness. All six ACIC subscale scores were responsive to system improvements diabetes and CHF teams made over the course of the collaboratives. The most substantial improvements were seen in decision support, delivery system design, and information systems. CHF teams had particularly high scores in self-management support at the completion of the collaborative. Pearson correlations between the ACIC subscales and the faculty rating ranged from .28 to .52.

Conclusion: These results and feedback from teams suggest that the ACIC is responsive to health care quality-improvement efforts and may be a useful tool to guide quality improvement in chronic illness care and to track progress over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434662PMC
http://dx.doi.org/10.1111/1475-6773.00049DOI Listing

Publication Analysis

Top Keywords

chronic illness
28
care chronic
16
care
12
illness care
12
acic subscale
12
subscale scores
12
acic
10
teams
9
assessment chronic
8
care acic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!