Development of visceral smooth muscle.

Results Probl Cell Differ

Department of Anatomy, University College of London, London WC1E 6BT, UK.

Published: January 2003

The development of the smooth musculature of viscera has attracted the interest of only relatively few investigators, and thus the field appears somewhat underexplored. The major emphasis on histochemical evidence--at the expense of ultrastructural and functional studies--may have limited the progress in this area. Mature tissue is formed through the differentiation of precursors into muscle cells and through the organization of these cells into a complex tissue where distribution and orientation of muscle cells, deployment of abundant extracellular materials and addition of other cellular elements (interstitial cells, fibroblasts, nerves, blood vessels) are characteristic and specific features. The precursor cells are found at sites where a muscle develops, and they derive predominantly from the mesoderm, but also from the neuroectoderm and from the endoderm. The process starts at different times in different organs. The earliest stages of differentiation are characterized by the precursor cells aggregating and becoming elongated; their longitudinal axis lies in a position similar to the one they will have in the mature muscle. Both the cytological and the histochemical differentiation follow distinct patterns in various muscles, with characteristic temporal sequences in the appearance of key features. This process must impart distinct functional properties to a muscle cell at each stage of its development. However, the chronological correspondence between ultrastructural and histochemical development is poorly understood. Histochemical studies have detected gradients of maturation of the muscle cells, for example, across the thickness of the gizzard musculature and along the length of the small intestine; ultrastructural studies have not yet confirmed the existence of these gradients. Muscle growth is accounted for by muscle cell enlargement (without nucleus duplication) and an increase in muscle cell number by mitosis of pre-existing differentiated muscle cells. De-differentiation and division of muscle cells, migration of muscle cells and late development of muscle cell precursors have all also been considered as possible mechanisms for muscle growth. Several authors have described the presence of precursor cells within developing smooth muscles, and they have described late differentiation of some muscle cells or waves of differentiation that would give rise to phenotypic heterogeneity of the mature muscle cell population. In contrast, other studies, mainly by electron microscopy, have suggested that, within large visceral muscles, the muscle cells differentiate synchronously. There are interesting data on the influence of adjacent tissues on the development of a smooth muscle, but the interplay of these and other factors has not been fully investigated. Smooth muscles contract from early in their development, hence mechanical factors are likely to influence development: on the one hand, passive stresses imposed on the muscle by other tissues, such as adjacent muscles or the contents of the viscera and, on the other hand, active forces generated by the muscle itself. The very attraction of visceral smooth muscles in the study of cellular morphogenesis--an attraction that has not yet been highlighted or exploited in scientific studies, either descriptively or experimentally--is that, onto a single type of cell, a large range of factors interact, such as the genetic expression, chemical influences (from other muscles, endocrine glands, nerves, other intramuscular cells) and mechanical factors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-540-45686-5_1DOI Listing

Publication Analysis

Top Keywords

muscle cells
32
muscle
21
muscle cell
20
cells
14
precursor cells
12
smooth muscles
12
development
8
visceral smooth
8
smooth muscle
8
development smooth
8

Similar Publications

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.

View Article and Find Full Text PDF

Dermatofibrosarcoma protuberans arising in the lower labial mucosa: a case report and literature review.

Int J Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, Tsukuba Gakuen Hospital, Tsukuba, Ibaraki, Japan.

Dermatofibrosarcoma protuberans (DFSP) is a low-grade, malignant, spindle cell tumour with an infiltrative growth pattern and a high local recurrence rate. Cases of oral DFSP are rare. This report describes a case of DFSP occurring in the labial mucosa.

View Article and Find Full Text PDF

MMP2 regulates proliferation and differentiation in chicken primary myoblasts, and RNA-seq screens for key genes.

Gene

January 2025

Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang 330032 China. Electronic address:

The growth and development of chicken skeletal muscle directly affects chicken meat production, which is very important for broiler industry. Matrix metallopeptidase 2 (MMP2) exists in skeletal muscle. However, the underlying regulating of MMP2 remain unknown.

View Article and Find Full Text PDF

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!