Objective: To characterize the endothelium-dependent and endothelium-independent components of abnormal pulmonary vascular tone in canine oleic acid lung injury.
Design: Prospective, interventional study.
Setting: University laboratory.
Subjects: Twenty anesthetized mongrel dogs.
Interventions: Right heart catheterization was performed to measure pulmonary vascular resistance before and after induction of oleic acid lung injury in ten anesthetized and ventilated dogs. Pulmonary and internal mammary artery rings were sampled in these ten dogs with oleic acid injury and in ten anesthetized healthy control dogs. We also studied the responses to acetylcholine, to phenylephrine, and to hypoxia of the intact or endothelium-denuded rings mounted in organ baths.
Measurements And Main Results: Oleic acid lung injury was associated with an increase in pulmonary vascular resistance from 118 +/- 11 to 245 +/- 47 dyne.sec.cm-5.m-2 and a decrease in the Pao2/Fio2 ratio from 451 +/- 42 to 139 +/- 26 mm Hg (mean +/- se, p <.05 and p <.01, respectively). Acetylcholine-induced relaxation was decreased in the oleic acid pulmonary artery rings compared with the controls (85 +/- 3% vs. 99 +/- 6% of precontraction level, p <.05). Phenylephrine-induced contraction was decreased in denuded oleic acid pulmonary artery rings compared with the controls (81 +/- 8% vs. 102 +/- 10% of contraction to KCl 120 mM, p <.05). In vitro hypoxia induced a small endothelium-dependent contraction followed by an endothelium-independent relaxation. These responses were not different in oleic acid lung artery rings and in controls, except for a decrease in hypoxic contraction in the oleic acid pulmonary artery rings. In vitro hypoxic pulmonary vasoconstriction and relaxation were, respectively, directly (r =.48) and inversely (r = -.67) correlated with oleic acid-induced increase in pulmonary vascular resistance. There was no correlation between in vitro internal mammary artery reactivity and oleic acid-induced increase in pulmonary vascular resistance.
Conclusions: Oleic acid-induced lung injury slightly impairs pulmonary arterial endothelium-dependent relaxation and endothelium-independent contraction. In vitro hypoxic pulmonary vasoreactivity is related to in vivo oleic acid-induced increase in pulmonary vascular resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00003246-200207000-00028 | DOI Listing |
Arch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFDiscov Nano
January 2025
Particle Engineering Centre, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
Purpose: Eyelid infiltrative basal cell carcinoma (iBCC) is the most common malignant tumor affecting the ocular adnexa, but studies on metabolic changes within its microenvironment and heterogeneity at the tumor invasive area are limited. This study aims to analyze metabolic differences among iBCC cell types using single-cell and spatial metabolomics analysis and to examine metabolic environment at the tumor invasive area.
Methods: Single-cell transcriptomic data of human basal cell carcinoma (BCC) were clustered and visualized using Uniform Manifold Approximation and Projection.
Sci Rep
January 2025
Department of Pharmacognosy, Faculty of Pharmacy and Health Sciences, University of Balochistan, Quetta, Pakistan.
Clozapine is a potent serotonin receptor antagonist and commonly used for the treatment of Schizophrenia. The study aimed to develop and optimize the transdermal matrix patch of clozapine. A 3-level, 3-factor Central Composite Design was applied to examine and validate the impact of various formulation variables, Eudragit, PEG, and oleic acid on in vitro drug release, flux, and tensile strength (TS).
View Article and Find Full Text PDFMicroorganisms
December 2024
VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!