Erythropoietin (EPO) plays an important role in the brain's response to neuronal injury. Systemic administration of recombinant human EPO (rhEPO) protects neurons from injury after middle cerebral artery occlusion, traumatic brain injury, neuroinflammation, and excitotoxicity. Protection is in part mediated by antiapoptotic mechanisms. We conducted parallel studies of rhEPO in a model of transient global retinal ischemia induced by raising intraocular pressure, which is a clinically relevant model for retinal diseases. We observed abundant expression of EPO receptor (EPO-R) throughout the ischemic retina. Neutralization of endogenous EPO with soluble EPO-R exacerbated ischemic injury, which supports a crucial role for an endogenous EPO/EPO-R system in the survival and recovery of neurons after an ischemic insult. Systemic administration of rhEPO before or immediately after retinal ischemia not only reduced histopathological damage but also promoted functional recovery as assessed by electroretinography. Exogenous EPO also significantly diminished terminal deoxynucleotidyltransferase-mediated dUTP end labeling labeling of neurons in the ischemic retina, implying an antiapoptotic mechanism of action. These results further establish EPO as a neuroprotective agent in acute neuronal ischemic injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125005PMC
http://dx.doi.org/10.1073/pnas.152321399DOI Listing

Publication Analysis

Top Keywords

systemic administration
8
retinal ischemia
8
ischemic retina
8
ischemic injury
8
neurons ischemic
8
injury
6
epo
6
ischemic
5
erythropoietin administration
4
administration protects
4

Similar Publications

Extracellular vesicles (EVs) are generated in all cells. Systemic administration of allogenic EVs derived from epithelial and mesenchymal cells has been shown to be safe, despite carrying an array of functional molecules, including thousands of proteins. To address whether epithelial cell-derived EVs can be modified to acquire the capacity to induce an immune response, we engineered 293T EVs to harbor the immunomodulatory molecules CD80, OX40L, and PD-L1.

View Article and Find Full Text PDF

Safety and immunogenicity of Ad26.COV2.S in adolescents: Phase 2 randomized clinical trial.

Hum Vaccin Immunother

December 2025

Crucell Integration, Janssen Research and Development, Beerse, Belgium.

We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.

View Article and Find Full Text PDF

BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use.

View Article and Find Full Text PDF

Purpose: Oral corticosteroids (OCS) are recommended for the treatment of exacerbations in people with COPD; however, high cumulative lifetime doses (≥1000mg prednisolone-equivalent) are associated with adverse health effects. This issue is well defined in asthma but is less well understood in COPD. The aim of this study was to examine cumulative OCS dispensed to people with COPD over 12 months.

View Article and Find Full Text PDF

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!