Formation of highly organized neocortical structure depends on the production and correct placement of the appropriate number and types of neurons. POU homeodomain proteins Brn-1 and Brn-2 are coexpressed in the developing neocortex, both in the late precursor cells and in the migrating neurons. Here we show that double disruption of both Brn-1 and Brn-2 genes in mice leads to abnormal formation of the neocortex with dramatically reduced production of layer IV-II neurons and defective migration of neurons unable to express mDab1. These data indicate that Brn-1 and Brn-2 share roles in the production and positioning of neocortical neuron development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186401PMC
http://dx.doi.org/10.1101/gad.978002DOI Listing

Publication Analysis

Top Keywords

brn-1 brn-2
16
brn-2 share
8
roles production
8
production positioning
8
neurons
5
brn-1
4
share crucial
4
crucial roles
4
production
4
positioning mouse
4

Similar Publications

Structures and anti-HSV-2 activities of neutral polysaccharides from an edible plant, Basella rubra L.

Int J Biol Macromol

January 2012

Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama, Japan.

Four neutral polysaccharides (BRN-1, BRN-2, BRN-3 and BRN-4) were isolated from the hot water extract of the aerial part of Basella rubra L. They were found to consist of a large amount of D-galactose (81.0-92.

View Article and Find Full Text PDF

In polyglutamine diseases including Huntington's disease (HD), mutant proteins containing expanded polyglutamine stretches form nuclear aggregates in neurons. Although analysis of their disease models suggested a significance of transcriptional dysregulation in these diseases, how it mediates the specific neuronal cell dysfunction remains obscure. Here we performed a comprehensive analysis of altered DNA binding of multiple transcription factors using R6/2 HD model mice brains that express an N-terminal fragment of mutant huntingtin (mutant Nhtt).

View Article and Find Full Text PDF

For differentiation, Schwann cells rely on the class III POU domain transcription factor Oct-6, which is expressed transiently when Schwann cells have established a one-to-one relation with axons but have not yet started to myelinate. Loss of Oct-6 leads to a transient arrest in this promyelinating stage and a delay in myelination. Although the closely related POU domain protein Brn-2 is coexpressed with Oct-6 in Schwann cells, its loss has only mild consequences.

View Article and Find Full Text PDF

Novel target sequences for Pax-6 in the brain-specific activating regions of the rat aldolase C gene.

J Biol Chem

December 2002

Département de Génétique, Développement et Pathologie Moléculaire, Institut Cochin, INSERM, CNRS, Université René Descartes, 24, rue du faubourg Saint Jacques, 75014 Paris, France.

Upstream activating sequences of the rat aldolase C gene are shown here to confer brain-specific expression in transgenic mice. In addition to binding sites described previously for the brain-expressed POU proteins Brn-1 and Brn-2 (Skala, H., Porteu, A.

View Article and Find Full Text PDF

Formation of highly organized neocortical structure depends on the production and correct placement of the appropriate number and types of neurons. POU homeodomain proteins Brn-1 and Brn-2 are coexpressed in the developing neocortex, both in the late precursor cells and in the migrating neurons. Here we show that double disruption of both Brn-1 and Brn-2 genes in mice leads to abnormal formation of the neocortex with dramatically reduced production of layer IV-II neurons and defective migration of neurons unable to express mDab1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!