Methylenedioxymethamphetamine (MDMA, Ecstasy) is a potent psychomotor stimulant with neurotoxic potential which is widely abused by females of childbearing age raising serious public health concerns in terms of exposure of the fetus to the drug. The current study was conducted using the three-dimensional reaggregate tissue culture system as an approach to the assessment of risk to fetal brain cells following exposure to MDMA during early to mid-gestation. In this culture system, the serotonergic and dopaminergic mesencephalic-striatal projections are reconstructed and develop with a time course similar to that observed in vivo. Pregnant C57Bl/6J mice were injected twice daily with 40 mg/kg MDMA or saline from gestational day 6 to 13. On gestational day 14, mesencephalic and striatal cells from MDMA- and saline-exposed embryos were used to prepare reaggregate cultures. Levels of neurotransmitters and their metabolites in the reaggregates and culture medium were assessed at 22 and 36 days of culture. There was a long-term enhancement of serotonergic development and metabolism by fetal exposure to MDMA as evidenced by increased reaggregate serotonin levels as well as the elevated production and release of 5-hydroxyindoleacetic acid in cultures prepared from MDMA-exposed embryos which persisted for up to 36 days of culture. Dopaminergic neurons in such cultures also exhibited increased metabolism as indicated by elevated levels of dihydroxyphenylacetic acid in reaggregate tissue and culture medium. The data obtained suggest that exposure to MDMA in utero during early to mid-gestation may result in more active serotonergic and dopaminergic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-3806(02)00411-xDOI Listing

Publication Analysis

Top Keywords

reaggregate tissue
12
tissue culture
12
exposure mdma
12
fetal exposure
8
development metabolism
8
three-dimensional reaggregate
8
culture system
8
early mid-gestation
8
serotonergic dopaminergic
8
gestational day
8

Similar Publications

Generation of a functional and self-tolerant T cell repertoire is a complex process dependent on the thymic microenvironment and, primarily, on the properties of its extracellular matrix (ECM). Thymic epithelial cells (TECs) are crucial in thymopoiesis, nurturing and selecting developing T cells by filtering self-reactive clones. TECs have been empirically demonstrated to be particularly sensitive to physical and chemical clues supplied by the ECM and classical monolayer cell culture leads to a quick loss of functionality until their death.

View Article and Find Full Text PDF

Induction of human stem cells into ameloblasts by reaggregation strategy.

Stem Cell Res Ther

September 2024

Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, P.R. China.

Background: Human epithelium-derived stem cells and induced pluripotent stem cells (hiPSCs) possess the capability to support tooth formation and differentiate into functional enamel-secreting ameloblasts, making them promising epithelial-component substitutes for future human tooth regeneration. However, current tissue recombination approaches are not only technically challenging, requiring precise induction procedures and sophisticated microsurgery, but also exhibit low success rates in achieving tooth formation and ameloblastic differentiation.

Methods: Suspended human keratinocyte stem cells (hKSCs) or cells from three hiPSC lines were directly mixed with dissociated embryonic mouse dental mesenchymal cells (mDMCs) that possess odontogenic potential in different proportions and reaggregated them to construct bioengineered tooth germs.

View Article and Find Full Text PDF

Thymic epithelial organoids mediate T-cell development.

Development

September 2024

Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Although the advent of organoids has opened unprecedented perspectives for basic and translational research, immune system-related organoids remain largely underdeveloped. Here, we established organoids from the thymus, the lymphoid organ responsible for T-cell development. We identified conditions enabling mouse thymic epithelial progenitor cell proliferation and development into organoids with diverse cell populations and transcriptional profiles resembling in vivo thymic epithelial cells (TECs) more closely than traditional TEC cultures.

View Article and Find Full Text PDF

In vivo movement of retinoblastoma-related protein (RBR) towards cytoplasm during mitosis in Arabidopsisthaliana.

Differentiation

December 2024

Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Facultad de Ciencias, Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico. Electronic address:

Retinoblastoma protein is central in signaling networks of fundamental cell decisions such as proliferation and differentiation in all metazoans and cancer development. Immunostaining and biochemical evidence demonstrated that during interphase retinoblastoma protein is in the nucleus and is hypophosphorylated, and during mitosis is in the cytoplasm and is hyperphosphorylated. The purpose of this study was to visualize in vivo in a non-diseased tissue, the dynamic spatial and temporal nuclear exit toward the cytoplasm of this protein during mitosis and its return to the nucleus to obtain insights into its potential cytosolic functions.

View Article and Find Full Text PDF
Article Synopsis
  • Interindividual genetic variation plays a significant role in how people respond to diseases, but studying differences in human brains has been challenging due to a lack of effective models and the complexity of human cellular systems.
  • The researchers introduced "human brain Chimeroids," which are organoids created from cells of multiple donors, allowing them to represent various genetic backgrounds in a single model and capture diverse cellular lineages of the cerebral cortex.
  • The study showed that these Chimeroids could effectively evaluate how different individuals' genetic backgrounds influence their susceptibility to neurotoxic substances like ethanol and valproic acid, highlighting the potential of this model for future research in brain development and disease variation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!