FGF10 is a mesenchymally derived stimulator for epidermal development in the chick embryonic skin.

Mech Dev

Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Japan.

Published: August 2002

The development of avian cutaneous appendages, feathers and scales, is known to arise from the epithelial-mesenchymal interaction. Here we show that FGF10 is associated with this developmental process as an early signal from mesenchymal cells underlying nascent cutaneous placodes. Expression of Fgf10 was detected in the mesenchymal cells underneath the developing placodes. Forced expression of Fgf10 in the femoral skin suppressed expression of Shh and a zinc finger gene snail-related (cSnR), while induced expression of Bmp2 in the interbud region, resulting in thickening of the epidermal layer. Furthermore, forced expression of Fgf10 in the foot skin caused marked ingrowings of the epidermis. The cells in the epidermal ingrowings expressed beta-catenin, proliferating cell nuclear antigen, and an epidermal stem cell marker p63. These results support the idea that FGF10 is a mesenchymally derived stimulator of epidermal development through crosstalk with bone morphogenetic protein (BMP), beta-catenin, and other signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0925-4773(02)00131-4DOI Listing

Publication Analysis

Top Keywords

expression fgf10
12
fgf10 mesenchymally
8
mesenchymally derived
8
derived stimulator
8
stimulator epidermal
8
epidermal development
8
mesenchymal cells
8
forced expression
8
fgf10
6
epidermal
5

Similar Publications

Background: Uterine Corpus Endometrial Carcinoma (UCEC) is a prevalent gynecologic malignancy with complex molecular underpinnings. This study identifies key woundhealing genes involved in UCEC and elucidates their roles through a comprehensive analysis.

Methods: In silico and in vitro experiments.

View Article and Find Full Text PDF

Integrin α8 is a useful cell surface marker of alveolar lipofibroblasts.

Respir Res

January 2025

Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.

Background: Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell.

View Article and Find Full Text PDF

5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype.

View Article and Find Full Text PDF

Effects of FGFR2b-ligand signaling on pancreatic branching morphogenesis and postnatal islet function.

J Mol Histol

December 2024

National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China.

Pancreatic development is a complex process vital for maintaining metabolic balance, requiring intricate interactions among different cell types and signaling pathways. Fibroblast growth factor receptors 2b (FGFR2b)-ligands signaling from adjacent mesenchymal cells is crucial in initiating pancreatic development and differentiating exocrine and endocrine cells through a paracrine mechanism. However, the precise critical time window that affects pancreatic development remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome is caused by heterozygous mutations leading to adrenocorticotropic hormone deficiency and immune system issues.
  • Researchers created pituitary organoids from edited human stem cells to study how specific genetic mutations affect pituitary development and found that these mutations significantly reduced the number of hormone-producing cells called corticotrophs.
  • The study identified changes in gene expression related to pituitary development and suggested that the observed mutations have a direct impact on endocrine function, classifying them as pathogenic for pituitary development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!