A key commonality of most age-related neurodegenerative diseases is the accumulation of aggregation-prone proteins in the brain. Except for the prionoses, the initiation and propagation of these proteopathies in vivo remains poorly understood. In a previous study, we found that the deposition of the amyloidogenic peptide Abeta can be induced by injection of dilute extracts of Alzheimeric neocortex into the brains of Tg2576 transgenic mice overexpressing the human beta-amyloid precursor protein. The present study was undertaken to assess the pathology after long-term (12 months) incubation, and to clarify the distinctive anatomical distribution of seeded Abeta-immunoreactivity. All mice were injected at 3 months of age; 5 months later, as expected, Abeta deposits were concentrated mostly in the injected hemisphere. After 12 months, abundant, transgene-derived Abeta deposits were present bilaterally in the forebrain, but plaque load was still clearly greater in the extract-injected hemisphere. There was also evidence of tau hyperphosphorylation in axons of the corpus callosum that had been injured by the injection, most prominently in transgenic mice, but also, to a lesser degree, in non-transgenic mice. Five months following injection of AD-extract, an isolated cluster of Abeta-immunoreactive microglia was sometimes evident in the ipsilateral entorhinal cortex; the strong innervation of the hippocampus by entorhinal cortical neurons suggests the possible spread of seeded pathology from the injection site via neuronal transport mechanisms. Finally, using India Ink to map the local dispersion of injectate, we found that Abeta induction is especially potent in places where the injectate is sequestered. The AD-seeding model can illuminate the emergence and spread of cerebral beta-amyloidosis and tau hyperphosphorylation, and thus could enhance our understanding of AD and its pathogenic commonalties with other cerebral proteopathies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0196-9781(02)00059-1 | DOI Listing |
Commun Biol
November 2024
Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China.
Helicobacter pylori (H. pylori) infection has been found associated with Alzheimer's disease (AD) with unclear mechanisms. Outer Membrane Vesicles (OMVs) are spherical particles secreted by Gram-negative bacteria.
View Article and Find Full Text PDFImmunity
November 2024
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany. Electronic address:
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies.
View Article and Find Full Text PDFNeurology
October 2024
From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI.
Alzheimers Res Ther
July 2024
Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain.
Background: Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β (Aβ) deposition in cerebral vessels, leading to lobar cerebral microbleeds (CMB) and intracerebral hemorrhages (ICH). Apolipoprotein J (ApoJ) is a multifunctional chaperone related to Aβ aggregation and clearance. Our study investigated the vascular impact of chronic recombinant human Apolipoprotein J (rhApoJ) treatment in a transgenic mouse model of β-amyloidosis with prominent CAA.
View Article and Find Full Text PDFNat Commun
July 2024
Institute of Neuroscience, Technical University of Munich, Munich, Germany.
Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!