Amphibian skin is a rich resource of antimicrobial peptides like maximins and maximins H from toad Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises maximin 3 and a novel peptide, named maximin H5, was isolated from a skin cDNA library of B. maxima. The predicted primary structure of maximin H5 is ILGPVLGLVSDTLDDVLGIL-NH2. Containing three aspartate residues and no basic amino acid residues, maximin H5 is characterized by an anionic property. Different from cationic maximin H peptides, only Gram-positive strain Staphylococcus aureus was sensitive to maximin H5, while the other bacterial and fungal strains tested were resistant to it. The presence of metal ions, like Zn2+ and Mg2+, did not increase its antimicrobial potency. Maximin H5 represents the first example of potential anionic antimicrobial peptides from amphibians. The results provide the first evidence that, together with cationic antimicrobial peptides, anionic antimicrobial peptides may also exist naturally as part of the innate defense system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(02)00762-3 | DOI Listing |
J Phys Chem B
January 2025
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.
PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
Mushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze the potentials of biometabolites and to extract antimicrobial peptides and protein from the C.
View Article and Find Full Text PDFMycobiology
December 2024
Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents.
View Article and Find Full Text PDFNPJ Antimicrob Resist
February 2024
National Heart and Lung Institute, Imperial College London, London, UK.
Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Artificial intelligence (AI) has transformed infectious disease control, enhancing rapid diagnosis and antibiotic discovery. While conventional tests delay diagnosis, AI-driven methods like machine learning and deep learning assist in pathogen detection, resistance prediction, and drug discovery. These tools improve antibiotic stewardship and identify effective compounds such as antimicrobial peptides and small molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!