AI Article Synopsis

  • Electroretinography (ERG) tests on adult Adcy1(brl) mutant mice showed reduced responses in scotopic conditions, indicating issues with the oscillatory potentials and the b-wave's initial phase.
  • These abnormalities were less noticeable in younger mutants aged 3-6 weeks.
  • Despite these functional differences, there were no signs of retinal degeneration or differences in visual evoked potentials compared to control mice, suggesting that AC1 pathways are important for retinal response to light but not for overall retinal health.

Article Abstract

Electroretinography (ERG) of adult Adcy1(brl) mutant mice, which are deficient in adenylyl cyclase type 1 (AC1) activity, revealed decreased amplitude of the oscillatory potentials (OP) and of the primary rising phase of the b-wave intensity-response function in scotopic conditions. These abnormalities were less discernable in 3-6 week old mutants. No abnormalities were detected in the ERG signal obtained in photopic conditions or in the dark adaptation dynamics. The mutants displayed no histologic evidence of retinal degeneration. Retinal output, as measured by visual evoked potentials, was not different from heterozygous control mice. AC1-dependent pathways contribute to the generation of the retinal response to light. They may be necessary for the maintenance of the neural generators of the ERG OP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0042-6989(02)00113-xDOI Listing

Publication Analysis

Top Keywords

oscillatory potentials
8
adenylyl cyclase
8
cyclase type
8
electroretinographic oscillatory
4
potentials reduced
4
reduced adenylyl
4
type deficient
4
deficient mice
4
mice electroretinography
4
electroretinography erg
4

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!