Galanin is a 29-amino-acid neuropeptide that has been implicated in the processes of nociception. This study examines the effect of exogenous galanin on dorsal horn neurone activity in vivo in the spinal nerve ligation (SNL) model of neuropathic pain. SNL rats but not naive or sham-operated rats exhibited behaviour indicative of allodynia. In anaesthetized rats, extracellular recordings were made from individual convergent dorsal horn neurones following stimulation of peripheral receptive fields electrically or with natural (innocuous mechanical, noxious mechanical and noxious thermal) stimuli. Spinal administration of galanin (0.5-50 microg) caused a slight facilitation of the neuronal responses to natural and electrical stimuli in naive rats and up to a 65% inhibition of neuronal responses in sham-operated rats following 50 microg galanin. In contrast, there was a marked inhibition of up to 80% of responses to both natural and electrical stimuli in SNL rats following spinal galanin administration. These results suggest that following peripheral nerve injury, there is plasticity in the levels of galanin and/or its receptors at spinal cord level so that the effect of exogenous galanin favours inhibitory function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0304-3959(02)00180-X | DOI Listing |
J Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Sport Injuries and Corrective Exercises, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
Individuals with intellectual disabilities (ID) often exhibit lower levels of physical fitness compared to the general population, including reduced strength, endurance, flexibility, and coordination. Dynamic neuromuscular stabilization (DNS) training can potentially improve the performance of adults with ID caused by weak motor skills due to a lack of desirable nerve growth during childhood and before puberty. Also, DNS training proposed to improve physical fitness in this population, but the effectiveness and durability of DNS training on specific fitness components have not been well-established.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China.
Objective: To investigate the application value of arthroscopic channel modification in meniscal injury repair.
Methods: We retrospectively analyzed the data of 100 patients with meniscus injuries treated with knee arthroscopy from December 2022 to December 2023 and divided them into a control group and a modified group according to the application of "arthroscopic access modification technology". We compared the operation time, postoperative hospitalization time, VAS score, Lysholm knee function score, postoperative complications, and postoperative images of the patients in these two groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!