Osteoprotegerin (OPG) is a novel tumor necrosis factor receptor superfamily that inhibits osteoclast differentiation, activity, and survival. Interleukin-1beta (IL-1beta) increases OPG expression. IL-1beta also increases prostaglandin E(2) (PGE(2)) production and stimulates bone resorption. In the present study, we examined the involvement of PGE(2) in IL-1beta-induced increases in OPG levels in human periodontal ligament cells (HPL cells) in an effort to clarify apparently conflicting IL-1beta actions on bone resorption and understand IL-1beta-induced increases in secretion of OPG and PGE(2) in HPL cells. 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole, a mRNA synthesis inhibitor, partly inhibited the increase in OPG mRNA levels induced by IL-1beta. Cycloheximide, a protein synthesis inhibitor, enhanced the stimulatory effect of IL-1beta. Etodolac, a selective cyclooxygenase-2 inhibitor, suppressed the increase in PGE(2) levels. Furthermore, etodolac reinforced the promotion of OPG expression by IL-1beta at the mRNA and protein levels. PGE(2) added to cultures of HPL cells decreased OPG mRNA levels in a dose- and time- dependent manner. These findings suggest that the increase in OPG levels induced by IL-1beta in HPL cells is suppressed through PGE(2) synthesized de novo.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cyto.2002.1026DOI Listing

Publication Analysis

Top Keywords

hpl cells
16
human periodontal
8
periodontal ligament
8
ligament cells
8
cells suppressed
8
synthesized novo
8
opg
8
il-1beta increases
8
increases opg
8
opg expression
8

Similar Publications

Various Hydrogel Types as a Potential In Vitro Angiogenesis Model.

Gels

December 2024

Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.

Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior during angiogenesis. Mesenchymal stem cells further augment cell and tissue growth and are therefore widely used in regenerative medicine.

View Article and Find Full Text PDF

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) can be isolated from umbilical cords which is abundant and easy to obtain. Due to their potent immunosuppressive properties, multilineage differentiation potential, and lack of ethical issues, WJ-MSCs are considered a promising candidate for therapeutic applications. However, large-scale in vitro expansion is necessary to obtain enough cells for therapeutic purposes.

View Article and Find Full Text PDF

Human platelet lysate enhances small lipid droplet accumulation of human MSCs through MAPK phosphorylation.

Stem Cell Res Ther

December 2024

Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.

Background: Human platelet lysate (hPL) has emerged as a promising serum substitute to enhance the self-renewal and multipotency of human mesenchymal stem cells (MSCs). Despite its potential, the specific biological mechanisms by which hPL influences MSC phenotypes remain inadequately understood.

Methods: We investigated the biological signaling activated by hPL in two common types of human MSCs: bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs).

View Article and Find Full Text PDF

Objective: . Aim: To investigate changes in oxidative stress indicators in rats under conditions of long-term ethanol exposure.

Patients And Methods: Materials and Methods: We studied the effect of prolonged exposure to ethanol on the activity of free radical processes in the gonads of rats of both sexes.

View Article and Find Full Text PDF

Heparin Differentially Regulates the Expression of Specific miRNAs in Mesenchymal Stromal Cells.

Int J Mol Sci

November 2024

Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria.

In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate (HPL)-supplemented cell cultures, on the expression of non-coding RNA species, particularly microRNAs (miRNA), which are pivotal regulators of gene expression. Through genomic analysis and quantitative RT-PCR, we assessed the differential impact of heparin on miRNA expression in various stromal cell types, derived from human bone marrow, umbilical cord and white adipose tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!