The influence of the phospholipid platelet-activating factor (PAF), its cell analogs, and lipid PAF antagonist on the production of superoxide radicals by leukocytes isolated from the blood of healthy and hypercholesterolemia IIA individuals was studied. It was found that endogenous superoxide production level in the leukocytes of hypercholesterolemic individuals more than 4-5 times higher than in the leukocytes of healthy individuals. Exogenous PAF stimulates the superoxide production in the leukocytes of healthy individuals but significantly inhibits the superoxide production in the leukocytes of hypercholesterolemic individuals. The compounds 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-PAF) and 1-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphocholine (1-alkenyl-PAF) only slightly inhibited the endogenous superoxide production in the leukocytes of hypercholesterolemia individuals. However, pretreatment of leukocytes by 1-alkenyl-PAF or PAF-antagonist (1-O-alk-1;-enyl-2-(2;-acetoxybenzoyl)-sn-glycero-3-phosphocholine) results in a 50% inhibition of the PAF-induced superoxide production by leukocytes of healthy individuals. This PAF-antagonist alone or in combination with PAF induces a substantial (65-70%) inhibition of superoxide production in the leukocytes of hypercholesterolemic individuals. It is concluded that superoxide production by leukocytes of healthy individuals and especially by leukocytes of hypercholesterolemic individuals is process that depends on PAF or PAF-like lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1016146305000 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!