Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The effectiveness of the scatter and attenuation correction process was similar to that observed in the phantom study. Because the total time required for computer processing was less than 10 minutes, this method of attenuation correction and image fusion for SPECT images is expected to become popular in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03000104DOI Listing

Publication Analysis

Top Keywords

attenuation correction
24
spect images
20
image fusion
16
scatter attenuation
16
spect
13
fusion spect
12
spect x-ray
12
skin surface
12
x-ray
9
correction
8

Similar Publications

Chapter 12: PREPARATION FOR PARATHYROID SURGERY.

Ann Endocrinol (Paris)

January 2025

Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, AP-HP, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphate, 94 275 Le Kremlin Bicêtre, France. Electronic address:

Preoperative treatment of PHPT aims to 1) manage severe and/or symptomatic hypercalcemia and 2) prevent postoperative hypocalcemia. Severe hypercalcemia, defined as a blood calcium level ≥ 3.5 mmol/L, requires admission to hospital in a conventional or critical care unit, depending on clinical symptoms and comorbidities.

View Article and Find Full Text PDF

This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

The purpose of the study was to compare heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) following high load resistance exercise (HLRE) and blood flow restriction exercise (BFRE) with a knee wrap (kBFRE) and pneumatic cuff (pBFRE). Eleven men (N = 9) and women (N = 2) participated. HR, SBP, and DBP were collected at Rest, immediately post exercise (IP), 10-, 30-, and 45-minutes post exercise.

View Article and Find Full Text PDF

Author Correction: Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress.

Sci Rep

January 2025

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!